IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v203y2023icp306-327.html
   My bibliography  Save this article

A parallel Archimedes optimization algorithm based on Taguchi method for application in the control of variable pitch wind turbine

Author

Listed:
  • Jiang, Shi-Jie
  • Chu, Shu-Chuan
  • Zou, Fu-Min
  • Shan, Jie
  • Zheng, Shi-Guang
  • Pan, Jeng-Shyang

Abstract

Archimedes optimization algorithm (AOA) is a recent metaheuristic algorithm that offers several advantages, including a few parameters, an easy-to-understand interface, and easy implementation. Still, some drawbacks exist, e.g., lack of diversity for search-exploring capacity, drop-trap local optimum. This study suggests a new variant of AOA based on the parallel and Taguchi method (TPAOA) for the global optimization problems and the wind turbine parameter adjust-tuning variable pitch controller problem. The parallel mechanism with communication strategy and the Taguchi orthogonal combination deal with the AOA’s drawbacks. The experimental results show that the proposed algorithm is more competitive than the other algorithms under the CEC2017 test suite. The wind turbine problem of parameter tuning difficulty of variable pitch controller is solved by applying the TPAOA. Compared solution results show that the TPAOA proves the feasibility smooth the output power of wind turbines and reducing the impact of wind speed fluctuations on the power grid, which has high feasibility.

Suggested Citation

  • Jiang, Shi-Jie & Chu, Shu-Chuan & Zou, Fu-Min & Shan, Jie & Zheng, Shi-Guang & Pan, Jeng-Shyang, 2023. "A parallel Archimedes optimization algorithm based on Taguchi method for application in the control of variable pitch wind turbine," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 306-327.
  • Handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:306-327
    DOI: 10.1016/j.matcom.2022.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542200297X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Machairas, Vasileios & Tsangrassoulis, Aris & Axarli, Kleo, 2014. "Algorithms for optimization of building design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 101-112.
    2. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    3. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeng-Shyang Pan & Li-Fa Liu & Shu-Chuan Chu & Pei-Cheng Song & Geng-Geng Liu, 2023. "A New Gaining-Sharing Knowledge Based Algorithm with Parallel Opposition-Based Learning for Internet of Vehicles," Mathematics, MDPI, vol. 11(13), pages 1-25, July.
    2. Mehmood, Khizer & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Cheema, Khalid Mehmood & Raja, Muhammad Asif Zahoor & Shu, Chi-Min, 2023. "Novel knacks of chaotic maps with Archimedes optimization paradigm for nonlinear ARX model identification with key term separation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    2. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    3. Qibo Liu & Xiao Han & Yuheng Yan & Juan Ren, 2023. "A Parametric Design Method for the Lighting Environment of a Library Building Based on Building Performance Evaluation," Energies, MDPI, vol. 16(2), pages 1-20, January.
    4. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    5. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    6. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    7. Javier López Gómez & Ana Ogando Martínez & Francisco Troncoso Pastoriza & Lara Febrero Garrido & Enrique Granada Álvarez & José Antonio Orosa García, 2020. "Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    8. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.
    9. Chengmin Wang & Guangji Li & Imran Ali & Hongchao Zhang & Han Tian & Jian Lu, 2022. "The Efficiency Prediction of the Laser Charging Based on GA-BP," Energies, MDPI, vol. 15(9), pages 1-12, April.
    10. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    11. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    12. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    13. Siripat Somchit & Palamy Thongbouasy & Chitchai Srithapon & Rongrit Chatthaworn, 2023. "Optimal Transmission Expansion Planning with Long-Term Solar Photovoltaic Generation Forecast," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. Margarete Afonso de Sousa Guilhon Araujo & Soraida Aguilar & Reinaldo Castro Souza & Fernando Luiz Cyrino Oliveira, 2024. "Global Horizontal Irradiance in Brazil: A Comparative Study of Reanalysis Datasets with Ground-Based Data," Energies, MDPI, vol. 17(20), pages 1-25, October.
    15. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    16. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    17. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    18. Shadram, Farshid & Bhattacharjee, Shimantika & Lidelöw, Sofia & Mukkavaara, Jani & Olofsson, Thomas, 2020. "Exploring the trade-off in life cycle energy of building retrofit through optimization," Applied Energy, Elsevier, vol. 269(C).
    19. Krebs-Moberg, Miles & Pitz, Mandy & Dorsette, Tiara L. & Gheewala, Shabbir H., 2021. "Third generation of photovoltaic panels: A life cycle assessment," Renewable Energy, Elsevier, vol. 164(C), pages 556-565.
    20. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:203:y:2023:i:c:p:306-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.