Analysis of Spatial and Temporal Evolution of Regional Water Resources Carrying Capacity and Influencing Factors—Anhui Province as an Example
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Siyu Gao & Haixiang Guo & Jing Yu, 2021. "Urban Water Inclusive Sustainability: Evidence from 38 Cities in the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 13(4), pages 1-32, February.
- Yizhen Jia & Han Wang, 2023. "Study on Water Resource Carrying Capacity of Zhengzhou City Based on DPSIR Model," IJERPH, MDPI, vol. 20(2), pages 1-13, January.
- Chong Wu & An-ding Jiang & Wenlong Zheng, 2022. "Study on the Measures for Optimizing China’s Provincial Territorial Space Based on the Perspective of Resource and Environmental Carrying Capacity in the New Situation," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
- Yin Su & Qifang Zheng & Shenghai Liao, 2022. "Spatio-Temporal Characteristics of Water Ecological Footprint and Countermeasures for Water Sustainability in Japan," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
- Shangan Ke & Yueqi Wu & Haiying Cui & Xinhai Lu & Kun Ge & Danling Chen, 2021. "The Temporal-Spatial Pattern and Coupling Coordination of the Green Transition of Farmland Use: Evidence from Hubei Province," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
- Huang, Ze & Liu, Yu & Qiu, Kaiyang & López-Vicente, Manuel & Shen, Weibo & Wu, Gao-Lin, 2021. "Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land: Implications for sustainable agroforestry water management," Agricultural Water Management, Elsevier, vol. 254(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li Yang & Yue Xu & Junqi Zhu & Keyu Sun, 2024. "Research on Water Ecological Resilience Measurement and Influencing Factors: A Case Study of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
- Jun Zhao & Guohua Fang & Xue Wang & Huayu Zhong, 2024. "Joint Optimization of Urban Water Quantity and Quality Allocation in the Plain River Network Area," Sustainability, MDPI, vol. 16(4), pages 1-17, February.
- Zhonglan Liu & Yuanyuan Bao, 2024. "Spatial and Temporal Divergence of Water Resource Carrying Capacity in Hubei Province, China, from the Perspective of Three Major Urban Agglomerations," Sustainability, MDPI, vol. 16(12), pages 1-22, June.
- Yuyang Mao & Yu Li & Xinlu Bai & Xiaolu Yang & Youting Han & Xin Fu, 2024. "Scenario-Based Green Infrastructure Installations for Building Urban Stormwater Resilience—A Case Study of Fengxi New City, China," Sustainability, MDPI, vol. 16(10), pages 1-22, May.
- Yuexia Han & Bin Dong & Zhili Xu & Jianshen Qu & Hao Wang & Liwen Xu, 2024. "Identification of Thermal Environment Networks in the Wanjiang Urban Agglomeration Based on MSPA and Circuit Theory," Land, MDPI, vol. 13(10), pages 1-21, October.
- Wentao Xu & Junliang Jin & Jianyun Zhang & Yanli Liu & Zhangkang Shu & Guoqing Wang & Zhenxin Bao & Cuishan Liu & Tiesheng Guan & Ruimin He, 2024. "Evaluation and analysis of spatio-temporal variation of water resources carrying capacity and restraining factor: a case study in Anhui Province, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-25, June.
- Shiyu Tang & Hao Yang & Yu Li, 2024. "Environmental Assessment and Restoration of the Hunjiang River Basin Based on the DPSIR Framework," Sustainability, MDPI, vol. 16(19), pages 1-15, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
- Jie Chang & Pingjun Sun & Guoen Wei, 2022. "Spatial Driven Effects of Multi-Dimensional Urbanization on Carbon Emissions: A Case Study in Chengdu-Chongqing Urban Agglomeration," Land, MDPI, vol. 11(10), pages 1-19, October.
- Wang, Qi & Zhang, Dengkui & Zhou, Xujiao & Mak-Mensah, Erastus & Zhao, Xiaole & Zhao, Wucheng & Wang, Xiaoyun & Stellmach, Dan & Liu, Qinglin & Li, Xiaoling & Li, Guang & Wang, Heling & Zhang, Kai, 2022. "Optimum planting configuration for alfalfa production with ridge-furrow rainwater harvesting in a semiarid region of China," Agricultural Water Management, Elsevier, vol. 266(C).
- Zhongfang Zhang & Lijun Hou & Yuhao Qian & Xing Wan, 2022. "Effect of Zero Growth of Fertilizer Action on Ecological Efficiency of Grain Production in China under the Background of Carbon Emission Reduction," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
- Xiuyu Huang & Ying Wang & Wanyi Liang & Zhaojun Wang & Xiao Zhou & Qinqiang Yan, 2023. "Spatial–Temporal Evolution and Driving Factors of the Low–Carbon Transition of Farmland Use in Coastal Areas of Guangdong Province," Land, MDPI, vol. 12(5), pages 1-23, May.
- Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
- Hongwei Deng & Jinxin Yang & Peng Wang, 2023. "Study on Coupling Coordination Relationship between Urban Development Intensity and Water Environment Carrying Capacity of Chengdu–Chongqing Economic Circle," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
- Xiaoyan Bu & Xiaomin Wang & Jiarui Wang & Ge Shi, 2023. "A Study on Resource Carrying Capacity and Early Warning of Urban Agglomerations of the Yellow River Basin Based on Sustainable Development Goals, China," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
- Li, Bingbing & Yang, Yi & Li, Zhi, 2021. "Combined effects of multiple factors on spatiotemporally varied soil moisture in China’s Loess Plateau," Agricultural Water Management, Elsevier, vol. 258(C).
- Feifei Jiang & Fu Chen & Yan Sun & Ziyi Hua & Xinhua Zhu & Jing Ma, 2023. "Spatiotemporal Pattern and Driving Mechanism of Cultivated Land Use Transition in China," Land, MDPI, vol. 12(10), pages 1-20, September.
- Jing Cao & Yiping Chen & Yao Jiang & Jingshu Chen & Yuanyuan Zhang & Junhua Wu, 2023. "Different Responses of Soil Moisture to Different Artificial Forest Species on the Loess Plateau," Sustainability, MDPI, vol. 15(19), pages 1-17, September.
More about this item
Keywords
water resources carrying capacity; ecology; kernel-density estimation; Dagum Gini coefficient; Anhui Province;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11255-:d:1197649. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.