IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11225-d1197088.html
   My bibliography  Save this article

Study of Flood Simulation in Small and Medium-Sized Basins Based on the Liuxihe Model

Author

Listed:
  • Jingyu Li

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Yangbo Chen

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Yanzheng Zhu

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Jun Liu

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

The uneven distribution of meteorological stations in small and medium-sized watersheds in China and the lack of measured hydrological data have led to difficulty in flood simulation and low accuracy in flood forecasting. Traditional hydrological models no longer achieve the forecasting accuracy needed for flood prevention. To improve the simulation accuracy of floods and maximize the use of hydrological information from small and medium-sized watersheds, high-precision hydrological models are needed as a support mechanism. This paper explores the applicability of the Liuxihe model for flood simulation in the Caojiang river basin and we compare flood simulation results of the Liuxihe model with a traditional hydrological model (Xinanjiang model). The results show that the Liuxihe model provides excellent simulation of field floods in Caojiang river basin. The average Nash–Sutcliffe coefficient is 0.73, the average correlation coefficient is 0.9, the average flood peak present error is 0.33, and the average peak simulation accuracy is 93.9%. Compared with the traditional flood hydrological model, the Liuxihe model simulates floods better with less measured hydrological information. In addition, we found that the particle swarm optimization (PSO) algorithm can improve the simulation of the model, and its practical application only needs one representative flood for parameter optimization, which is suitable for areas with little hydrological information. The study can support flood forecasting in the Caojiang river basin and provide a reference for the preparation of flood forecasting schemes in other small and medium-sized watersheds.

Suggested Citation

  • Jingyu Li & Yangbo Chen & Yanzheng Zhu & Jun Liu, 2023. "Study of Flood Simulation in Small and Medium-Sized Basins Based on the Liuxihe Model," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11225-:d:1197088
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raffaele Cioffi & Marta Travaglioni & Giuseppina Piscitelli & Antonella Petrillo & Fabio De Felice, 2020. "Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
    2. Manish Kumar Goyal & Venkatesh K. Panchariya & Ashutosh Sharma & Vishal Singh, 2018. "Comparative Assessment of SWAT Model Performance in two Distinct Catchments under Various DEM Scenarios of Varying Resolution, Sources and Resampling Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 805-825, January.
    3. Omid Bozorg-Haddad & Babak Zolghadr-Asli & Xuefeng Chu & Hugo A. Loáiciga, 2021. "Intense extreme hydro-climatic events take a toll on society," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2385-2391, September.
    4. Binquan Li & Zhongmin Liang & Qingrui Chang & Wei Zhou & Huan Wang & Jun Wang & Yiming Hu, 2020. "On the Operational Flood Forecasting Practices Using Low-Quality Data Input of a Distributed Hydrological Model," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    5. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang & Yizhen Wang, 2022. "Land-Use-Based Runoff Yield Method to Modify Hydrological Model for Flood Management: A Case in the Basin of Simple Underlying Surface," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    6. Abhinav Kumar Singh & Pankaj Kumar & Rawshan Ali & Nadhir Al-Ansari & Dinesh Kumar Vishwakarma & Kuldeep Singh Kushwaha & Kanhu Charan Panda & Atish Sagar & Ehsan Mirzania & Ahmed Elbeltagi & Alban Ku, 2022. "An Integrated Statistical-Machine Learning Approach for Runoff Prediction," Sustainability, MDPI, vol. 14(13), pages 1-30, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alim Al Ayub Ahmed & Sugandha Agarwal & IMade Gede Ariestova Kurniawan & Samuel P. D. Anantadjaya & Chitra Krishnan, 2022. "Business boosting through sentiment analysis using Artificial Intelligence approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 699-709, March.
    2. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    3. Sunghun Kim & Youngjin Park & Seungbeom Yoo & Ocktaeck Lim & Bernike Febriana Samosir, 2023. "Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    4. Hao Wang & Chen Peng & Bolin Liao & Xinwei Cao & Shuai Li, 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    5. Yanrong Liu & Zhongqiu Meng & Lei Zhu & Di Hu & Handong He, 2023. "Optimizing the Sample Selection of Machine Learning Models for Landslide Susceptibility Prediction Using Information Value Models in the Dabie Mountain Area of Anhui, China," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    6. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2023. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3313-3335, June.
    7. Ning He & Wenxian Guo & Hongxiang Wang & Long Yu & Siyuan Cheng & Lintong Huang & Xuyang Jiao & Wenxiong Chen & Haotong Zhou, 2023. "Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China," Land, MDPI, vol. 12(7), pages 1-19, July.
    8. Bowen Li & Fangxin Jiang & Hongjie Xia & Jiawei Pan, 2022. "Under the Background of AI Application, Research on the Impact of Science and Technology Innovation and Industrial Structure Upgrading on the Sustainable and High-Quality Development of Regional Econo," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    9. Shizhou Ma & Karen F. Beazley & Patrick Nussey & Christopher S. Greene, 2021. "Assessing Optimal Digital Elevation Model Selection for Active River Area Delineation Across Broad Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4825-4840, November.
    10. Isaac Akomea-Frimpong & Amma Kyewaa Agyekum & Alexander Baah Amoakwa & Prosper Babon-Ayeng & Fatemeh Pariafsai, 2024. "Toward the attainment of climate-smart PPP infrastructure projects: a critical review and recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 19195-19229, August.
    11. Yan Zhou & Zhongmin Liang & Binquan Li & Yixin Huang & Kai Wang & Yiming Hu, 2021. "Seamless Integration of Rainfall Spatial Variability and a Conceptual Hydrological Model," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    12. Maksymilian Mądziel, 2023. "Liquified Petroleum Gas-Fuelled Vehicle CO 2 Emission Modelling Based on Portable Emission Measurement System, On-Board Diagnostics Data, and Gradient-Boosting Machine Learning," Energies, MDPI, vol. 16(6), pages 1-15, March.
    13. Iztok Palčič & Jasna Prester, 2020. "Impact of Advanced Manufacturing Technologies on Green Innovation," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    14. Hengxu Jin & Xiaoping Rui & Xiaoyan Li, 2022. "Analysing the Performance of Four Hydrological Models in a Chinese Arid and Semi-Arid Catchment," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    15. Li Wei & Mahmud Iwan Solihin & Sarah ‘Atifah Saruchi & Winda Astuti & Lim Wei Hong & Ang Chun Kit, 2024. "Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review," SN Operations Research Forum, Springer, vol. 5(3), pages 1-71, September.
    16. Harikrishna Sukumaran & Sanat Nalini Sahoo, 2020. "A Methodological Framework for Identification of Baseline Scenario and Assessing the Impact of DEM Scenarios on SWAT Model Outputs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4795-4814, December.
    17. Rabab Triki & Mohamed Hédi Maâloul & Younès Bahou & Mohamed Kadria, 2023. "The Impact of Digitization to Ensure Competitiveness of the Ha’il Region to Achieve Sustainable Development Goals," Sustainability, MDPI, vol. 15(2), pages 1-13, January.
    18. Joško Trošelj & Han Soo Lee & Lena Hobohm, 2023. "Enhancing a Real-Time Flash Flood Predictive Accuracy Approach for the Development of Early Warning Systems: Hydrological Ensemble Hindcasts and Parameterizations," Sustainability, MDPI, vol. 15(18), pages 1-33, September.
    19. Okan Mert Katipoğlu, 2023. "Prediction of Streamflow Drought Index for Short-Term Hydrological Drought in the Semi-Arid Yesilirmak Basin Using Wavelet Transform and Artificial Intelligence Techniques," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    20. Alik Ismail-Zadeh, 2022. "Natural hazards and climate change are not drivers of disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2147-2154, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11225-:d:1197088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.