IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i15d10.1007_s11269-020-02691-5.html
   My bibliography  Save this article

A Methodological Framework for Identification of Baseline Scenario and Assessing the Impact of DEM Scenarios on SWAT Model Outputs

Author

Listed:
  • Harikrishna Sukumaran

    (NIT Rourkela)

  • Sanat Nalini Sahoo

    (NIT Rourkela)

Abstract

The study attempts to evaluate the impact of DEM source (AW3D30 DEM, CartoDEM v2 R1, SRTM v4.1 DEM and ASTER GDEM v2), DEM resolution (30 m to 1000 m), resampling approaches (nearest neighbor, bilinear interpolation, cubic convolution, majority) and area threshold (1500 Ha, 10,000 Ha, 25,000 Ha, 35,000 Ha, 50,000 Ha) on hydrological model (SWAT) simulated outputs. A methodological framework by two criteria: (1) DEM quality assessment and (2) river network delineation capability of DEM were developed for identifying best DEM among the considered DEMs for baseline scenario. It is found from the study that AW3D30 DEM best represented the terrain of the catchment among the evaluated topographic models with a least RMSE value of 7.44 m. Further AW3D30 DEM had the best river network extraction capability with a minimum RMSE value of 44.52 m in comparison with reference network. All the DEM scenarios were found to be insensitive for surface runoff. Ground water flow, evapotranspiration, potential evapotranspiration and water yield estimates did not show any sensitivity to DEM scenarios but soil water content showed its sensitivity to area threshold scenario. In water quality estimates, all DEM scenarios were found to be highly sensitive to sediment yields in comparison to total nitrogen and total phosphorus.

Suggested Citation

  • Harikrishna Sukumaran & Sanat Nalini Sahoo, 2020. "A Methodological Framework for Identification of Baseline Scenario and Assessing the Impact of DEM Scenarios on SWAT Model Outputs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4795-4814, December.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02691-5
    DOI: 10.1007/s11269-020-02691-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02691-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02691-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mou Leong Tan & Hilmi P. Ramli & Tze Huey Tam, 2018. "Effect of DEM Resolution, Source, Resampling Technique and Area Threshold on SWAT Outputs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4591-4606, November.
    2. Manish Kumar Goyal & Venkatesh K. Panchariya & Ashutosh Sharma & Vishal Singh, 2018. "Comparative Assessment of SWAT Model Performance in two Distinct Catchments under Various DEM Scenarios of Varying Resolution, Sources and Resampling Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 805-825, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaleel Muhammed & Aavudai Anandhi & Gang Chen, 2022. "Comparing Methods for Estimating Habitat Suitability," Land, MDPI, vol. 11(10), pages 1-19, October.
    2. Rong Gan & Changzheng Chen & Jie Tao & Yongqiang Shi, 2021. "Hydrological Process Simulation of Sluice-Controlled Rivers in the Plains Area of China Based on an Improved SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1817-1835, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shizhou Ma & Karen F. Beazley & Patrick Nussey & Christopher S. Greene, 2021. "Assessing Optimal Digital Elevation Model Selection for Active River Area Delineation Across Broad Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4825-4840, November.
    2. Jingyu Li & Yangbo Chen & Yanzheng Zhu & Jun Liu, 2023. "Study of Flood Simulation in Small and Medium-Sized Basins Based on the Liuxihe Model," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    3. Ji Shen & Fangbi Tan, 2020. "Effects of DEM resolution and resampling technique on building treatment for urban inundation modeling: a case study for the 2016 flooding of the HUST campus in Wuhan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 927-957, October.
    4. Mou Leong Tan & Hilmi P. Ramli & Tze Huey Tam, 2018. "Effect of DEM Resolution, Source, Resampling Technique and Area Threshold on SWAT Outputs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4591-4606, November.
    5. Alberto Martínez-Salvador & Carmelo Conesa-García, 2020. "Suitability of the SWAT Model for Simulating Water Discharge and Sediment Load in a Karst Watershed of the Semiarid Mediterranean Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 785-802, January.
    6. Hüseyin Akay & Müsteyde Baduna Koçyiğit, 2021. "An Approach for Determination of the Drainage Network Effect on GIUH Using Hesitant Probabilistic Fuzzy Linguistic Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3873-3902, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02691-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.