IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p11015-d1193614.html
   My bibliography  Save this article

Thermal Bridges Monitoring and Energy Optimization of Rural Residences in China’s Cold Regions

Author

Listed:
  • Mingqian Guo

    (School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Yue Wu

    (School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Xinran Miao

    (School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)

Abstract

With the worldwide dissemination of the “green development” concept and the advancement of China’s new rural construction, the sustainable development of rural residences has gained significant attention within the construction industry. This article focuses on large-scale prefabricated insulation block houses used in China’s cold regions, specifically examining the case of Defa Village in Nenjiang City, Heilongjiang Province. By utilizing thermal imaging cameras, the thermal bridge parts of these houses are detected, and a finite element model is established to optimize the comprehensive heat transfer coefficient of these areas. This optimization is achieved by expanding the insulation layer and implementing low thermal bridge structures, ultimately enhancing the insulation and energy-saving efficiency of the houses. Simultaneously, an energy-saving analysis is conducted based on an optimized enclosure structure scheme, considering seven key design factors that influence building energy consumption: span, depth, clear height, and window-to-wall ratio in all four directions. Through a comprehensive experimental method, the building energy consumption is evaluated, and a scheme with optimal values is proposed. The results demonstrate that the insulation block walls and the main structures with expanded insulation layers and low thermal bridge structures are easier to construct. When compared to the original scheme, the comprehensive heat transfer coefficient of the walls is reduced by 54.82%, while that of the beams and columns is reduced by 97%. Implementing the optimal value scheme leads to a reduction of 66.83% in the building’s overall energy consumption. This research provides valuable guidance for the design and construction of large-scale insulated block rural residences, revealing the substantial potential of rural residences in terms of energy-saving and emission reduction.

Suggested Citation

  • Mingqian Guo & Yue Wu & Xinran Miao, 2023. "Thermal Bridges Monitoring and Energy Optimization of Rural Residences in China’s Cold Regions," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11015-:d:1193614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/11015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/11015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baldinelli, Giorgio & Bianchi, Francesco & Rotili, Antonella & Costarelli, Danilo & Seracini, Marco & Vinti, Gianluca & Asdrubali, Francesco & Evangelisti, Luca, 2018. "A model for the improvement of thermal bridges quantitative assessment by infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 854-864.
    2. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    3. Ascione, Fabrizio & Bianco, Nicola & Rossi, Filippo de’ & Turni, Gianluca & Vanoli, Giuseppe Peter, 2012. "Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates," Applied Energy, Elsevier, vol. 97(C), pages 405-418.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Atsonios & Ioannis Mandilaras & Maria Founti, 2019. "Thermal Assessment of a Novel Drywall System Insulated with VIPs," Energies, MDPI, vol. 12(12), pages 1-18, June.
    2. Tiziana Basiricò & Antonio Cottone & Daniele Enea, 2020. "Analytical Mathematical Modeling of the Thermal Bridge between Reinforced Concrete Wall and Inter-Floor Slab," Sustainability, MDPI, vol. 12(23), pages 1-21, November.
    3. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    4. Theodosiou, Theodoros & Tsikaloudaki, Katerina & Kontoleon, Karolos & Giarma, Christina, 2021. "Assessing the accuracy of predictive thermal bridge heat flow methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    5. Przemysław Miąsik & Joanna Krasoń, 2021. "Thermal Efficiency of Trombe Wall in the South Facade of a Frame Building," Energies, MDPI, vol. 14(3), pages 1-23, January.
    6. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    7. Danilo Costarelli & Michele Piconi & Gianluca Vinti, 2023. "On the convergence properties of sampling Durrmeyer‐type operators in Orlicz spaces," Mathematische Nachrichten, Wiley Blackwell, vol. 296(2), pages 588-609, February.
    8. David Bienvenido-Huertas & Juan Antonio Fernández Quiñones & Juan Moyano & Carlos E. Rodríguez-Jiménez, 2018. "Patents Analysis of Thermal Bridges in Slab Fronts and Their Effect on Energy Demand," Energies, MDPI, vol. 11(9), pages 1-18, August.
    9. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Capozzoli, Alfonso & Gorrino, Alice & Corrado, Vincenzo, 2013. "A building thermal bridges sensitivity analysis," Applied Energy, Elsevier, vol. 107(C), pages 229-243.
    11. Mohamed F. Zedan & Sami Al-Sanea & Abdulaziz Al-Mujahid & Zeyad Al-Suhaibani, 2016. "Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis," Sustainability, MDPI, vol. 8(6), pages 1-20, June.
    12. Martin, Miguel & Chong, Adrian & Biljecki, Filip & Miller, Clayton, 2022. "Infrared thermography in the built environment: A multi-scale review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Victor Lohmann & Paulo Santos, 2020. "Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments," Energies, MDPI, vol. 13(11), pages 1-25, May.
    14. Paulo Santos & Keerthan Poologanathan, 2021. "The Importance of Stud Flanges Size and Shape on the Thermal Performance of Lightweight Steel Framed Walls," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    15. Natalia Cid & Ana Ogando & M. A. Gómez, 2017. "Acquisition System Verification for Energy Efficiency Analysis of Building Materials," Energies, MDPI, vol. 10(9), pages 1-12, August.
    16. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    17. Paulo Santos & Paulo Lopes & David Abrantes, 2022. "Thermal Performance of Load-Bearing, Lightweight, Steel-Framed Partition Walls Using Thermal Break Strips: A Parametric Study," Energies, MDPI, vol. 15(24), pages 1-16, December.
    18. Paulo Santos & Telmo Ribeiro, 2021. "Thermal Performance Improvement of Double-Pane Lightweight Steel Framed Walls Using Thermal Break Strips and Reflective Foils," Energies, MDPI, vol. 14(21), pages 1-16, October.
    19. Jolanta Šadauskienė & Juozas Ramanauskas & Lina Šeduikytė & Mindaugas Daukšys & Algimantas Vasylius, 2015. "A Simplified Methodology for Evaluating the Impact of Point Thermal Bridges on the High-Energy Performance of a Passive House," Sustainability, MDPI, vol. 7(12), pages 1-16, December.
    20. Paulo Santos & Gabriela Lemes & Diogo Mateus, 2019. "Thermal Transmittance of Internal Partition and External Facade LSF Walls: A Parametric Study," Energies, MDPI, vol. 12(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:11015-:d:1193614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.