IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i14p10775-d1190238.html
   My bibliography  Save this article

Sustainable Green Energy Management: Optimizing Scheduling of Multi-Energy Systems Considered Energy Cost and Emission Using Attractive Repulsive Shuffled Frog-Leaping

Author

Listed:
  • Kumaran Kadirgama

    (Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia)

  • Omar I. Awad

    (Mechanical Engineering Department, College of Engineering, Gulf University, Sanad 26489, Bahrain
    Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
    Engineering College, University of Kirkuk, Kirkuk 36001, Iraq)

  • M. N. Mohammed

    (Mechanical Engineering Department, College of Engineering, Gulf University, Sanad 26489, Bahrain)

  • Hai Tao

    (School of Artificial Intelligence, Nanchang Institute of Science and Technology, Nanchang 330099, China)

  • Ali A. H. Karah Bash

    (Department of Electrical and Electronics Engineering, University of Gaziantep, Gaziantep 27310, Turkey)

Abstract

As energy systems become increasingly complex, there is a growing need for sustainable and efficient energy management strategies that reduce greenhouse gas emissions. In this paper, multi-energy systems (MES) have emerged as a promising solution that integrates various energy sources and enables energy sharing between different sectors. The proposed model is based on using an Attractive Repulsive Shuffled Frog-Leaping (ARSFL) algorithm that optimizes the scheduling of energy resources, taking into account constraints such as capacity limitations and environmental regulations. The model considers different energy sources, including renewable energy and a power-to-gas (P2G) network with power grid, and incorporates a demand–response mechanism that allows consumers to adjust their energy consumption patterns in response to price signals and other incentives. The ARSFL algorithm demonstrates superior performance in managing and minimizing energy purchase uncertainty compared to the particle swarm optimization (PSO) and genetic algorithm (GA). It also exhibits significantly reduced execution time, saving approximately 1.59% compared to PSO and 2.7% compared to GA.

Suggested Citation

  • Kumaran Kadirgama & Omar I. Awad & M. N. Mohammed & Hai Tao & Ali A. H. Karah Bash, 2023. "Sustainable Green Energy Management: Optimizing Scheduling of Multi-Energy Systems Considered Energy Cost and Emission Using Attractive Repulsive Shuffled Frog-Leaping," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10775-:d:1190238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/14/10775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/14/10775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamil, Mohammed & Ramadan, Khalid M. & Olabi, Abdul Ghani & Al-Ali, Eman I. & Ma, Xiao & Awad, Omar I., 2020. "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renewable Energy, Elsevier, vol. 147(P1), pages 1880-1894.
    2. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    3. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    4. Bailera, Manuel & Peña, Begoña & Lisbona, Pilar & Romeo, Luis M., 2018. "Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings," Applied Energy, Elsevier, vol. 228(C), pages 1032-1045.
    5. Yilmaz, Hasan Ümitcan & Kimbrough, Steven O. & van Dinther, Clemens & Keles, Dogan, 2022. "Power-to-gas: Decarbonization of the European electricity system with synthetic methane," Applied Energy, Elsevier, vol. 323(C).
    6. Ahmed N. Abdalla & Yongfeng Ju & Muhammad Shahzad Nazir & Hai Tao, 2022. "A Robust Economic Framework for Integrated Energy Systems Based on Hybrid Shuffled Frog-Leaping and Local Search Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    7. Akulker, Handan & Aydin, Erdal, 2023. "Optimal design and operation of a multi-energy microgrid using mixed-integer nonlinear programming: Impact of carbon cap and trade system and taxing on equipment selections," Applied Energy, Elsevier, vol. 330(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksei Vakhnin & Ivan Ryzhikov & Christina Brester & Harri Niska & Mikko Kolehmainen, 2024. "Weather-Based Prediction of Power Consumption in District Heating Network: Case Study in Finland," Energies, MDPI, vol. 17(12), pages 1-32, June.
    2. Ningning Cui & Emmanuel Nketiah & Xiaoyu Ma, 2023. "Do Green Energy and Information Technology Influence Greenhouse Gas Emitting Countries to Attain Sustainable Development?," Sustainability, MDPI, vol. 15(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    3. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    4. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    5. Li, Ling-Ling & Ji, Bing-Xiang & Liu, Guan-Chen & Yuan, Jian-Ping & Tseng, Shuan-Wei & Lim, Ming K. & Tseng, Ming-Lang, 2024. "Grid-connected multi-microgrid system operational scheduling optimization: A hierarchical improved marine predators algorithm," Energy, Elsevier, vol. 294(C).
    6. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    7. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    8. Li, Chaoshun & Tang, Geng & Xue, Xiaoming & Chen, Xinbiao & Wang, Ruoheng & Zhang, Chu, 2020. "The short-term interval prediction of wind power using the deep learning model with gradient descend optimization," Renewable Energy, Elsevier, vol. 155(C), pages 197-211.
    9. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    10. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).
    11. Ju, Liwei & Lu, Xiaolong & Yang, Shenbo & Li, Gen & Fan, Wei & Pan, Yushu & Qiao, Huiting, 2022. "A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response," Applied Energy, Elsevier, vol. 327(C).
    12. Moraes, Paola S. & Igansi, Andrei V. & Cadaval, Tito R.S. & Pinto, Luiz A.A., 2020. "Biodiesel produced from crude, degummed, neutralized and bleached oils of Nile tilapia waste: Production efficiency, physical-chemical quality and economic viability," Renewable Energy, Elsevier, vol. 161(C), pages 110-119.
    13. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Raphael Souza de Oliveira & Meire Jane Lima de Oliveira & Erick Giovani Sperandio Nascimento & Renelson Sampaio & Aloísio Santos Nascimento Filho & Hugo Saba, 2023. "Renewable Energy Generation Technologies for Decarbonizing Urban Vertical Buildings: A Path towards Net Zero," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    15. Long, Yong & Liu, Xia, 2024. "Optimal green investment strategy for grid-connected microgrid considering the impact of renewable energy source endowment and incentive policy," Energy, Elsevier, vol. 295(C).
    16. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).
    17. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    18. Massimiliano Caramia & Giuseppe Stecca, 2024. "Unregulated Cap-and-Trade Model for Sustainable Supply Chain Management," Mathematics, MDPI, vol. 12(3), pages 1-14, February.
    19. Shen, Haotian & Zhang, Hualiang & Xu, Yujie & Chen, Haisheng & Zhang, Zhilai & Li, Wenkai & Su, Xu & Xu, Yalin & Zhu, Yilin, 2024. "Two stage robust economic dispatching of microgrid considering uncertainty of wind, solar and electricity load along with carbon emission predicted by neural network model," Energy, Elsevier, vol. 300(C).
    20. Masrur, Hasan & Khaloie, Hooman & Al-Awami, Ali T. & Ferik, Sami El & Senjyu, Tomonobu, 2024. "Cost-aware modeling and operation of interconnected multi-energy microgrids considering environmental and resilience impact," Applied Energy, Elsevier, vol. 356(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:14:p:10775-:d:1190238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.