IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i12p2840-d1411663.html
   My bibliography  Save this article

Weather-Based Prediction of Power Consumption in District Heating Network: Case Study in Finland

Author

Listed:
  • Aleksei Vakhnin

    (Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210 Kuopio, Finland)

  • Ivan Ryzhikov

    (Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210 Kuopio, Finland)

  • Christina Brester

    (Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210 Kuopio, Finland)

  • Harri Niska

    (Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210 Kuopio, Finland)

  • Mikko Kolehmainen

    (Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1E, 70210 Kuopio, Finland)

Abstract

Accurate prediction of energy consumption in district heating systems plays an important role in supporting effective and clean energy production and distribution in dense urban areas. Predictive models are needed for flexible and cost-effective operation of energy production and usage, e.g., using peak shaving or load shifting to compensate for heat losses in the pipeline. This helps to avoid exceedance of power plant capacity. The purpose of this study is to automate the process of building machine learning (ML) models to solve a short-term power demand prediction problem. The dataset contains a district heating network’s measured hourly power consumption and ambient temperature for 415 days. In this paper, we propose a hybrid evolutionary-based algorithm, named GA-SHADE, for the simultaneous optimization of ML models and feature selection. The GA-SHADE algorithm is a hybrid algorithm consisting of a Genetic Algorithm (GA) and success-history-based parameter adaptation for differential evolution (SHADE). The results of the numerical experiments show that the proposed GA-SHADE algorithm allows the identification of simplified ML models with good prediction performance in terms of the optimized feature subset and model hyperparameters. The main contributions of the study are (1) using the proposed GA-SHADE, ML models with varying numbers of features and performance are obtained. (2) The proposed GA-SHADE algorithm self-adapts during operation and has only one control parameter. There is no fine-tuning required before execution. (3) Due to the evolutionary nature of the algorithm, it is not sensitive to the number of features and hyperparameters to be optimized in ML models. In conclusion, this study confirms that each optimized ML model uses a unique set and number of features. Out of the six ML models considered, SVR and NN are better candidates and have demonstrated the best performance across several metrics. All numerical experiments were compared against the measurements and proven by the standard statistical tests.

Suggested Citation

  • Aleksei Vakhnin & Ivan Ryzhikov & Christina Brester & Harri Niska & Mikko Kolehmainen, 2024. "Weather-Based Prediction of Power Consumption in District Heating Network: Case Study in Finland," Energies, MDPI, vol. 17(12), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2840-:d:1411663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/12/2840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/12/2840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumaran Kadirgama & Omar I. Awad & M. N. Mohammed & Hai Tao & Ali A. H. Karah Bash, 2023. "Sustainable Green Energy Management: Optimizing Scheduling of Multi-Energy Systems Considered Energy Cost and Emission Using Attractive Repulsive Shuffled Frog-Leaping," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    2. Mohamed, Zaid & Bodger, Pat, 2005. "Forecasting electricity consumption in New Zealand using economic and demographic variables," Energy, Elsevier, vol. 30(10), pages 1833-1843.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    2. Pappas, S.Sp. & Ekonomou, L. & Karamousantas, D.Ch. & Chatzarakis, G.E. & Katsikas, S.K. & Liatsis, P., 2008. "Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models," Energy, Elsevier, vol. 33(9), pages 1353-1360.
    3. Lin, Jiang & Xu Liu, & Gang He,, 2020. "Regional electricity demand and economic transition in China," Utilities Policy, Elsevier, vol. 64(C).
    4. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    5. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    6. Satrio Mukti Wibowo & Dedi Budiman Hakim & Baba Barus & Akhmad Fauzi, 2022. "Estimation of Energy Demand in Indonesia using Artificial Neural Network," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 261-271, November.
    7. Parajuli, Ranjan & Østergaard, Poul Alberg & Dalgaard, Tommy & Pokharel, Govind Raj, 2014. "Energy consumption projection of Nepal: An econometric approach," Renewable Energy, Elsevier, vol. 63(C), pages 432-444.
    8. Lena Ahmadi & Eric Croiset & Ali Elkamel & Peter L. Douglas & Woramon Unbangluang & Evgueniy Entchev, 2012. "Impact of PHEVs Penetration on Ontario’s Electricity Grid and Environmental Considerations," Energies, MDPI, vol. 5(12), pages 1-19, November.
    9. Collins, Ross D. & Selin, Noelle E. & de Weck, Olivier L. & Clark, William C., 2017. "Using inclusive wealth for policy evaluation: Application to electricity infrastructure planning in oil-exporting countries," Ecological Economics, Elsevier, vol. 133(C), pages 23-34.
    10. Zhang, Wenbin & Tian, Lixin & Wang, Minggang & Zhen, Zaili & Fang, Guochang, 2016. "The evolution model of electricity market on the stable development in China and its dynamic analysis," Energy, Elsevier, vol. 114(C), pages 344-359.
    11. Cho, Youngsang & Lee, Jongsu & Kim, Tai-Yoo, 2007. "The impact of ICT investment and energy price on industrial electricity demand: Dynamic growth model approach," Energy Policy, Elsevier, vol. 35(9), pages 4730-4738, September.
    12. Varma, Rashmi & Sushil,, 2019. "Bridging the electricity demand and supply gap using dynamic modeling in the Indian context," Energy Policy, Elsevier, vol. 132(C), pages 515-535.
    13. Velasquez, Carlos E. & Zocatelli, Matheus & Estanislau, Fidellis B.G.L. & Castro, Victor F., 2022. "Analysis of time series models for Brazilian electricity demand forecasting," Energy, Elsevier, vol. 247(C).
    14. Kostadin Yotov & Emil Hadzhikolev & Stanka Hadzhikoleva & Stoyan Cheresharov, 2022. "Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System," Sustainability, MDPI, vol. 14(17), pages 1-18, September.
    15. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    16. Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
    17. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    18. Pielow, Amy & Sioshansi, Ramteen & Roberts, Matthew C., 2012. "Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors," Energy, Elsevier, vol. 46(1), pages 533-540.
    19. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
    20. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2840-:d:1411663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.