IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9677-d881501.html
   My bibliography  Save this article

Effect of Bitumen Production Process and Mix Heating Temperature on the Rheological Properties of Hot Recycled Mix Asphalt

Author

Listed:
  • Emiliano Prosperi

    (Dipartimento di Ingegneria Civile Edile e Architettura, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy)

  • Edoardo Bocci

    (Faculty of Enginnering, Università degli Studi eCampus, 22060 Novedrate, Italy)

  • Maurizio Bocci

    (Dipartimento di Ingegneria Civile Edile e Architettura, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy)

Abstract

Heavy traffic loads require the replacement of damaged pavements, so a huge amount of reclaimed asphalt pavement (RAP) material is now available and must be recycled in order to avoid landfill and to achieve both environmental and economic benefits. The most common and profitable solution to reuse RAP is associated with the hot recycling technique, as it allows recovering both solid and binding components of RAP. Several factors influence the performance of hot recycled mix asphalt (HRMA). Among those, this paper focuses on the role played by the origin of the virgin bitumen, i.e. the oil-distillation process, and by the mixing temperature adopted during HRMA production. The objective was to evaluate the rheological properties of mixtures produced using a high amount of RAP (50%), two different rejuvenators, two mixing temperatures (140 °C or 170 °C) and two neat bitumen types derived from different distillation processes (visbreaker and straight-run). The results showed that the addition of RAP led to an increase in the dynamic modulus and a decrease in the phase angle, while the use of rejuvenators partly tended to rebalance these characteristics. The visbreaker bitumen showed a higher sensitivity to short-term aging than the straight-run, determining higher mix stiffness and lower viscous features. The higher mixing temperature also determined an increase in the complex modulus and a reduction in the phase angle as a result of the higher mobilization of the aged bitumen from the RAP.

Suggested Citation

  • Emiliano Prosperi & Edoardo Bocci & Maurizio Bocci, 2022. "Effect of Bitumen Production Process and Mix Heating Temperature on the Rheological Properties of Hot Recycled Mix Asphalt," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9677-:d:881501
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edoardo Bocci & Emiliano Prosperi & Volkmar Mair & Maurizio Bocci, 2020. "Ageing and Cooling of Hot-Mix-Asphalt during Hauling and Paving—A Laboratory and Site Study," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    2. Emiliano Prosperi & Edoardo Bocci, 2021. "A Review on Bitumen Aging and Rejuvenation Chemistry: Processes, Materials and Analyses," Sustainability, MDPI, vol. 13(12), pages 1-35, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng Wang & Xianwu Ling & Jun Lin & Bing Xiang & Dongdong Yuan & Wentong Wang & Di Wang & Dedong Guo, 2023. "Effect of Blending Behavior on the Performance of Hot Recycled Asphalt Mixtures," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    2. Jingjing Xiao & Teng Wang & Jinlong Hong & Chong Ruan & Yufei Zhang & Dongdong Yuan & Wangjie Wu, 2023. "Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Xiao & Teng Wang & Jinlong Hong & Chong Ruan & Yufei Zhang & Dongdong Yuan & Wangjie Wu, 2023. "Experimental Study of Permeable Asphalt Mixture Containing Reclaimed Asphalt Pavement," Sustainability, MDPI, vol. 15(13), pages 1-19, July.
    2. Teng Wang & Xianwu Ling & Jun Lin & Bing Xiang & Dongdong Yuan & Wentong Wang & Di Wang & Dedong Guo, 2023. "Effect of Blending Behavior on the Performance of Hot Recycled Asphalt Mixtures," Sustainability, MDPI, vol. 15(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9677-:d:881501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.