IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3788-d581083.html
   My bibliography  Save this article

Embodied Energy and Embodied GWP of Windows: A Critical Review

Author

Listed:
  • Francesco Asdrubali

    (Department of Engineering, Roma Tre University, 00146 Rome, Italy)

  • Marta Roncone

    (Department of Engineering, Roma Tre University, 00146 Rome, Italy)

  • Gianluca Grazieschi

    (Department of Engineering, Roma Tre University, 00146 Rome, Italy)

Abstract

The construction sector is one of the most energy-intensive in the industrialized countries. In order to limit climate change emissions throughout the entire life cycle of a building, in addition to reducing energy consumption in the operational phase, attention should also be paid to the embodied energy and CO 2 emissions of the building itself. The purpose of this work is to review data on embodied energy and GWP derived from EPDs of different types of windows, to identify the LCA phases, the most impacting materials and processes from an environmental point of view and to perform a critical analysis of the outcomes. The results show a strong dependence on the typology of the frame, with wooden windows having competitive performances: lower average primary energy non-renewable (1123 MJ/FU), higher average primary energy renewable (respectively 817 MJ/FU) and lower global warming potential (54 kgCO 2 eq/FU). More transparency and standardization in the information conveyed by the program operators is, however, desirable for a better comparability of windows performances. In particular, the inclusion of the operational impact in the EPD is sporadic, but strongly important, since it can be the most impactful phase.

Suggested Citation

  • Francesco Asdrubali & Marta Roncone & Gianluca Grazieschi, 2021. "Embodied Energy and Embodied GWP of Windows: A Critical Review," Energies, MDPI, vol. 14(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3788-:d:581083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
    2. Hee, W.J. & Alghoul, M.A. & Bakhtyar, B. & Elayeb, OmKalthum & Shameri, M.A. & Alrubaih, M.S. & Sopian, K., 2015. "The role of window glazing on daylighting and energy saving in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 323-343.
    3. Myunghwan Oh & Jaesung Park & Seungjun Roh & Chulsung Lee, 2018. "Deducing the Optimal Control Method for Electrochromic Triple Glazing through an Integrated Evaluation of Building Energy and Daylight Performance," Energies, MDPI, vol. 11(9), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    2. Jacopo Famiglietti & Hicham Madioum & Mario Motta, 2023. "Developing a New Data-Driven LCA Tool at the Urban Scale: The Case of the Embodied Environmental Profile of the Building Sector," Sustainability, MDPI, vol. 15(15), pages 1-30, July.
    3. Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    4. Younhee Choi & Akihito Ozaki & Haksung Lee, 2022. "Impact of Window Frames on Annual Energy Consumption of Residential Buildings and Its Contribution to CO 2 Emission Reductions at the City Scale," Energies, MDPI, vol. 15(10), pages 1-15, May.
    5. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    6. Eckard Helmers & Chia Chien Chang & Justin Dauwels, 2022. "Carbon Footprinting of Universities Worldwide Part II: First Quantification of Complete Embodied Impacts of Two Campuses in Germany and Singapore," Sustainability, MDPI, vol. 14(7), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    2. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    3. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    4. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    5. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    6. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    7. Lee, Junghun & Kim, Jeonggook & Song, Doosam & Kim, Jonghun & Jang, Cheolyong, 2017. "Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1081-1088.
    8. Shaik, Saboor & Maduru, Venkata Ramana & Kontoleon, Karolos J. & Arıcı, Müslüm & Gorantla, Kirankumar & Afzal, Asif, 2022. "Building glass retrofitting strategies in hot and dry climates: Cost savings on cooling, diurnal lighting, color rendering, and payback timeframes," Energy, Elsevier, vol. 243(C).
    9. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    10. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    11. Santu Golder & Ramadas Narayanan & Md. Rashed Hossain & Mohammad Rofiqul Islam, 2021. "Experimental and CFD Investigation on the Application for Aerogel Insulation in Buildings," Energies, MDPI, vol. 14(11), pages 1-16, June.
    12. Herie Park, 2020. "Human Comfort-Based-Home Energy Management for Demand Response Participation," Energies, MDPI, vol. 13(10), pages 1-15, May.
    13. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Zhu, T.T. & Wang, T.Y. & Liang, L., 2021. "Numerical evaluation of the thermal performance of different types of double glazing flat-plate solar air collectors," Energy, Elsevier, vol. 233(C).
    14. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    15. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    16. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    17. DeForest, Nicholas & Shehabi, Arman & Selkowitz, Stephen & Milliron, Delia J., 2017. "A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings," Applied Energy, Elsevier, vol. 192(C), pages 95-109.
    18. Chambers, Jonathan & Hollmuller, Pierre & Bouvard, Olivia & Schueler, Andreas & Scartezzini, Jean-Louis & Azar, Elie & Patel, Martin K., 2019. "Evaluating the electricity saving potential of electrochromic glazing for cooling and lighting at the scale of the Swiss non-residential national building stock using a Monte Carlo model," Energy, Elsevier, vol. 185(C), pages 136-147.
    19. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Taesub Lim & Daeung Danny Kim, 2022. "Thermal Comfort Assessment of the Perimeter Zones by Using CFD Simulation," Sustainability, MDPI, vol. 14(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3788-:d:581083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.