IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7942-d1145554.html
   My bibliography  Save this article

Division and Analysis of Accident-Prone Areas near Highway Ramps Based on Spatial Autocorrelation

Author

Listed:
  • Qing Ye

    (National Engineering and Research Center for Mountainous Highways, Chongqing 400067, China
    Research and Development Center of Transport Industry of Self-Driving Technology, China Merchants Chongqing Communications Technology Research and Design Institute Co., Ltd., Chongqing 400067, China
    School of Big Data & Software Engineering, Chongqing University, Chongqing 400030, China
    These authors contributed equally to this study.)

  • Yi Li

    (Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China
    These authors contributed equally to this study.)

  • Wenzhe Shen

    (Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China)

  • Zhaoze Xuan

    (Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China)

Abstract

This study focuses on identifying accident-prone areas and analyzing the factors contributing to the distribution of traffic accidents near highway ramps. A combined method of kernel density estimation, spatial autocorrelation analysis, and multivariate logistic regression analysis helped to identify accident hotspots. Through data collection and analysis, the clustering characteristics of traffic accidents in the diversion and merging areas were identified. Four levels of accident-prone areas were divided according to the accident rates. The factors influencing the spatial distribution of accidents were analyzed. The results showed that traffic accidents in the diversion area were concentrated near the exit, but the accidents in merging areas had a wider range of distribution. The analysis of this phenomenon was conducted using the multinomial logit model results. The important factors of different accident-prone areas were clarified. The temperature, the accident lane, weather conditions, and the time of day had significant impacts on the spatial distribution of traffic accidents. The study’s findings provide an important decision-making basis for highway accident prevention management.

Suggested Citation

  • Qing Ye & Yi Li & Wenzhe Shen & Zhaoze Xuan, 2023. "Division and Analysis of Accident-Prone Areas near Highway Ramps Based on Spatial Autocorrelation," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7942-:d:1145554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maosheng Li & Hui Xie & Panpan Shu, 2021. "Study on the Impact of Traffic Accidents in Key Areas of Rural Roads," Sustainability, MDPI, vol. 13(14), pages 1-17, July.
    2. Nuntaporn Klinjun & Matthew Kelly & Chanita Praditsathaporn & Rewwadee Petsirasan, 2021. "Identification of Factors Affecting Road Traffic Injuries Incidence and Severity in Southern Thailand Based on Accident Investigation Reports," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    3. Yuhuan Zhang & Huapu Lu & Wencong Qu, 2020. "Geographical Detection of Traffic Accidents Spatial Stratified Heterogeneity and Influence Factors," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    4. Maowei Chen & Lele Zhou & Sangho Choo & Hyangsook Lee, 2022. "Analysis of Risk Factors Affecting Urban Truck Traffic Accident Severity in Korea," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    5. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minxue Zheng & Xintong Xie & Yutao Jiang & Qiu Shen & Xiaolei Geng & Luyao Zhao & Feng Jia, 2024. "Optimizing Kernel Density Estimation Bandwidth for Road Traffic Accident Hazard Identification: A Case Study of the City of London," Sustainability, MDPI, vol. 16(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rishuang Sun & Chi Zhang & Yujie Xiang & Lei Hou & Bo Wang, 2022. "Identification Method for Crash-Prone Sections of Mountain Highway under Complex Weather Conditions," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    2. Yaxin Fan & Xinyan Zhu & Bing She & Wei Guo & Tao Guo, 2018. "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    3. Hongwen Xia & Rengkui Liu & Wei Zhou & Wenhui Luo, 2024. "Modeling the Causes of Urban Traffic Crashes: Accounting for Spatiotemporal Instability in Cities," Sustainability, MDPI, vol. 16(20), pages 1-16, October.
    4. Wang, Cheng & Wang, Gang & Guo, Ziru & Dai, Lingjun & Liu, Hongyu & Li, Yufeng & Chen, Hao & Zhao, Yongxiang & Zhang, Yanan & Cheng, Hai, 2020. "Effects of land-use change on the distribution of the wintering red-crowned crane (Grus japonensis) in the coastal area of northern Jiangsu Province, China," Land Use Policy, Elsevier, vol. 90(C).
    5. Mert Ersen & Ali Hakan Büyüklü & Semra Taşabat Erpolat, 2021. "Analysis of Fatal and Injury Traffic Accidents in Istanbul Sarıyer District with Spatial Statistics Methods," Sustainability, MDPI, vol. 13(19), pages 1-39, October.
    6. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    7. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    8. Tianzheng Xiao & Huapu Lu & Jianyu Wang & Katrina Wang, 2021. "Predicting and Interpreting Spatial Accidents through MDLSTM," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    9. Delso, Javier & Martín, Belén & Ortega, Emilio, 2018. "A new procedure using network analysis and kernel density estimations to evaluate the effect of urban configurations on pedestrian mobility. The case study of Vitoria –Gasteiz," Journal of Transport Geography, Elsevier, vol. 67(C), pages 61-72.
    10. Ke Nie & Zhensheng Wang & Qingyun Du & Fu Ren & Qin Tian, 2015. "A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    11. Loidl, Martin & Traun, Christoph & Wallentin, Gudrun, 2016. "Spatial patterns and temporal dynamics of urban bicycle crashes—A case study from Salzburg (Austria)," Journal of Transport Geography, Elsevier, vol. 52(C), pages 38-50.
    12. Shenjun Yao & Jinzi Wang & Lei Fang & Jianping Wu, 2018. "Identification of Vehicle-Pedestrian Collision Hotspots at the Micro-Level Using Network Kernel Density Estimation and Random Forests: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 10(12), pages 1-11, December.
    13. Antonio Palazón-Bru & María José Prieto-Castelló & David Manuel Folgado-de la Rosa & Ana Macanás-Martínez & Emma Mares-García & María de los Ángeles Carbonell-Torregrosa & Vicente Francisco Gil-Guillé, 2020. "Development, and Internal, and External Validation of a Scoring System to Predict 30-Day Mortality after Having a Traffic Accident Traveling by Private Car or Van: An Analysis of 164,790 Subjects and ," IJERPH, MDPI, vol. 17(24), pages 1-13, December.
    14. Farbod Farhangi & Abolghasem Sadeghi-Niaraki & Seyed Vahid Razavi-Termeh & Soo-Mi Choi, 2021. "Evaluation of Tree-Based Machine Learning Algorithms for Accident Risk Mapping Caused by Driver Lack of Alertness at a National Scale," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    15. Yuquan Zhou & Yingzhi Wang & Feng Zhang & Hongye Zhou & Keran Sun & Yuhan Yu, 2023. "GATR: A Road Network Traffic Violation Prediction Method Based on Graph Attention Network," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    16. Zhang, Lingxian & Wang, Jieqiong & Wen, Haojie & Fu, Zetian & Li, Xinxing, 2016. "Operating performance, industry agglomeration and its spatial characteristics of Chinese photovoltaic industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 373-386.
    17. Jianhua Ni & Tianlu Qian & Changbai Xi & Yikang Rui & Jiechen Wang, 2016. "Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis," IJERPH, MDPI, vol. 13(8), pages 1-13, August.
    18. Peng, Qiao & Bakkar, Yassine & Wu, Liangpeng & Liu, Weilong & Kou, Ruibing & Liu, Kailong, 2024. "Transportation resilience under Covid-19 Uncertainty: A traffic severity analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    19. Mahyar Ghorbanzadeh & Mohammadreza Koloushani & Mehmet Baran Ulak & Eren Erman Ozguven & Reza Arghandeh Jouneghani, 2020. "Statistical and Spatial Analysis of Hurricane-induced Roadway Closures and Power Outages," Energies, MDPI, vol. 13(5), pages 1-18, March.
    20. Morakot Worachairungreung & Sarawut Ninsawat & Apichon Witayangkurn & Matthew N. Dailey, 2021. "Identification of Road Traffic Injury Risk Prone Area Using Environmental Factors by Machine Learning Classification in Nonthaburi, Thailand," Sustainability, MDPI, vol. 13(7), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7942-:d:1145554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.