IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10239-d634936.html
   My bibliography  Save this article

Evaluation of Tree-Based Machine Learning Algorithms for Accident Risk Mapping Caused by Driver Lack of Alertness at a National Scale

Author

Listed:
  • Farbod Farhangi

    (Geoinformation Tech. Center of Excellence, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran 19697, Iran)

  • Abolghasem Sadeghi-Niaraki

    (Geoinformation Tech. Center of Excellence, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran 19697, Iran
    Department of Computer Science and Engineering, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 143-747, Korea)

  • Seyed Vahid Razavi-Termeh

    (Geoinformation Tech. Center of Excellence, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran 19697, Iran)

  • Soo-Mi Choi

    (Department of Computer Science and Engineering, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 143-747, Korea)

Abstract

Drivers’ lack of alertness is one of the main reasons for fatal road traffic accidents (RTA) in Iran. Accident-risk mapping with machine learning algorithms in the geographic information system (GIS) platform is a suitable approach for investigating the occurrence risk of these accidents by analyzing the role of effective factors. This approach helps to identify the high-risk areas even in unnoticed and remote places and prioritizes accident-prone locations. This paper aimed to evaluate tuned machine learning algorithms of bagged decision trees (BDTs), extra trees (ETs), and random forest (RF) in accident-risk mapping caused by drivers’ lack of alertness (due to drowsiness, fatigue, and reduced attention) at a national scale of Iran roads. Accident points and eight effective criteria, namely distance to the city, distance to the gas station, land use/cover, road structure, road type, time of day, traffic direction, and slope, were applied in modeling, using GIS. The time factor was utilized to represent drivers’ varied alertness levels. The accident dataset included 4399 RTA records from March 2017 to March 2019. The performance of all models was cross-validated with five-folds and tree metrics of mean absolute error, mean squared error, and area under the curve of the receiver operating characteristic (ROC-AUC). The results of cross-validation showed that BDT and RF performance with an AUC of 0.846 were slightly more accurate than ET with an AUC of 0.827. The importance of modeling features was assessed by using the Gini index, and the results revealed that the road type, distance to the city, distance to the gas station, slope, and time of day were the most important, while land use/cover, traffic direction, and road structure were the least important. The proposed approach can be improved by applying the traffic volume in modeling and helps decision-makers take necessary actions by identifying important factors on road safety.

Suggested Citation

  • Farbod Farhangi & Abolghasem Sadeghi-Niaraki & Seyed Vahid Razavi-Termeh & Soo-Mi Choi, 2021. "Evaluation of Tree-Based Machine Learning Algorithms for Accident Risk Mapping Caused by Driver Lack of Alertness at a National Scale," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10239-:d:634936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gang Tao & Huansheng Song & Jun Liu & Jiao Zou & Yanxiang Chen, 2016. "A traffic accident morphology diagnostic model based on a rough set decision tree," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(8), pages 751-758, November.
    2. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    3. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatemeh Sadat Hosseini & Myoung Bae Seo & Seyed Vahid Razavi-Termeh & Abolghasem Sadeghi-Niaraki & Mohammad Jamshidi & Soo-Mi Choi, 2023. "Geospatial Artificial Intelligence (GeoAI) and Satellite Imagery Fusion for Soil Physical Property Predicting," Sustainability, MDPI, vol. 15(19), pages 1-25, September.
    2. Tongqiang Ding & Lianxin Zhang & Jianfeng Xi & Yingjuan Li & Lili Zheng & Kexin Zhang, 2023. "Bus Fleet Accident Prediction Based on Violation Data: Considering the Binding Nature of Safety Violations and Service Violations," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    3. Azher Ibrahim Al-Taei & Ali Asghar Alesheikh & Ali Darvishi Boloorani, 2023. "Land Use/Land Cover Change Analysis Using Multi-Temporal Remote Sensing Data: A Case Study of Tigris and Euphrates Rivers Basin," Land, MDPI, vol. 12(5), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivian Welch & Christine M. Mathew & Panteha Babelmorad & Yanfei Li & Elizabeth T. Ghogomu & Johan Borg & Monserrat Conde & Elizabeth Kristjansson & Anne Lyddiatt & Sue Marcus & Jason W. Nickerson & K, 2021. "Health, social care and technological interventions to improve functional ability of older adults living at home: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    2. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," IZA Discussion Papers 14020, Institute of Labor Economics (IZA).
    3. Menkhoff, Lukas & Miethe, Jakob, 2019. "Tax evasion in new disguise? Examining tax havens' international bank deposits," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 176, pages 53-78.
    4. Ran Abramitzky & Roy Mill & Santiago Pérez, 2020. "Linking individuals across historical sources: A fully automated approach," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 53(2), pages 94-111, April.
    5. Werner Eichhorst & Ulf Rinne, 2017. "Digital Challenges for the Welfare State," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 18(04), pages 03-08, December.
    6. Sant'Anna, Ana Claudia & Bergtold, Jason & Shanoyan, Aleksan & Caldas, Marcellus & Granco, Gabriel, 2021. "Deal or No Deal? Analysis of Bioenergy Feedstock Contract Choice with Multiple Opt-out Options and Contract Attribute Substitutability," 2021 Conference, August 17-31, 2021, Virtual 315289, International Association of Agricultural Economists.
    7. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    8. Erkmen Giray Aslim, 2019. "The Relationship Between Health Insurance and Early Retirement: Evidence from the Affordable Care Act," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(1), pages 112-140, January.
    9. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    10. Edna P. Conwi & Alexander G. Cortez & Normita Ramos, 2016. "Effects of the Dualized Training Program on the Occupational Interest of the Students Enrolled in Bachelor of Science in Hotel and Restaurant Management," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 7(1), pages 31-36, January.
    11. Nihan Akyelken, 2017. "Mobility-Related Economic Exclusion: Accessibility and Commuting Patterns in Industrial Zones in Turkey," Social Inclusion, Cogitatio Press, vol. 5(4), pages 175-182.
    12. Youngna Choi, 2022. "Economic Stimulus and Financial Instability: Recent Case of the U.S. Household," JRFM, MDPI, vol. 15(6), pages 1-25, June.
    13. Camillia Kong & John Coggon & Michael Dunn & Penny Cooper, 2019. "Judging Values and Participation in Mental Capacity Law," Laws, MDPI, vol. 8(1), pages 1-22, February.
    14. Dreher, Axel & Fuchs, Andreas & Langlotz, Sarah, 2019. "The effects of foreign aid on refugee flows," European Economic Review, Elsevier, vol. 112(C), pages 127-147.
    15. Dindo, Pietro & Massari, Filippo, 2020. "The wisdom of the crowd in dynamic economies," Theoretical Economics, Econometric Society, vol. 15(4), November.
    16. Ferrarini, Benno & Maupin, Julie & Hinojales , Marthe, 2017. "Distributed Ledger Technologies for Developing Asia," ADB Economics Working Paper Series 533, Asian Development Bank.
    17. Andrzej Cieślik & Sarhad Hamza, 2022. "Inward FDI, IFRS Adoption and Institutional Quality: Insights from the MENA Countries," IJFS, MDPI, vol. 10(3), pages 1-19, June.
    18. Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," SciencePo Working papers Main hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," PSE-Ecole d'économie de Paris (Postprint) hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," PSE Working Papers hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," Post-Print hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," SciencePo Working papers Main hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," PSE-Ecole d'économie de Paris (Postprint) hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," Working Papers hal-03612850, HAL.
    19. Billari, Francesco C. & Giuntella, Osea & Stella, Luca, 2018. "Broadband internet, digital temptations, and sleep," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 58-76.
    20. Anastasios Evgenidis & Apostolos Fasianos, 2019. "Monetary Policy and Wealth Inequalities in Great Britain: Assessing the role of unconventional policies for a decade of household data," Papers 1912.09702, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10239-:d:634936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.