IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i24p9518-d464703.html
   My bibliography  Save this article

Development, and Internal, and External Validation of a Scoring System to Predict 30-Day Mortality after Having a Traffic Accident Traveling by Private Car or Van: An Analysis of 164,790 Subjects and 79,664 Accidents

Author

Listed:
  • Antonio Palazón-Bru

    (Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain)

  • María José Prieto-Castelló

    (Department of Pathology and Surgery, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain)

  • David Manuel Folgado-de la Rosa

    (Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain)

  • Ana Macanás-Martínez

    (Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain)

  • Emma Mares-García

    (Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain)

  • María de los Ángeles Carbonell-Torregrosa

    (Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain)

  • Vicente Francisco Gil-Guillén

    (Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain
    These authors contributed equally to this work.)

  • Antonio Cardona-Llorens

    (Department of Pathology and Surgery, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain
    These authors contributed equally to this work.)

  • Dolores Marhuenda-Amorós

    (Department of Pathology and Surgery, Miguel Hernández University, San Juan de Alicante, 03550 Alicante, Spain
    These authors contributed equally to this work.)

Abstract

Predictive factors for fatal traffic accidents have been determined, but not addressed collectively through a predictive model to help determine the probability of mortality and thereby ascertain key points for intervening and decreasing that probability. Data on all road traffic accidents with victims involving a private car or van occurring in Spain in 2015 (164,790 subjects and 79,664 accidents) were analyzed, evaluating 30-day mortality following the accident. As candidate predictors of mortality, variables associated with the accident (weekend, time, number of vehicles, road, brightness, and weather) associated with the vehicle (type and age of vehicle, and other types of vehicles in the accident) and associated with individuals (gender, age, seat belt, and position in the vehicle) were examined. The sample was divided into two groups. In one group, a logistic regression model adapted to a points system was constructed and internally validated, and in the other group the model was externally validated. The points system obtained good discrimination and calibration in both the internal and the external validation. Consequently, a simple tool is available to determine the risk of mortality following a traffic accident, which could be validated in other countries.

Suggested Citation

  • Antonio Palazón-Bru & María José Prieto-Castelló & David Manuel Folgado-de la Rosa & Ana Macanás-Martínez & Emma Mares-García & María de los Ángeles Carbonell-Torregrosa & Vicente Francisco Gil-Guillé, 2020. "Development, and Internal, and External Validation of a Scoring System to Predict 30-Day Mortality after Having a Traffic Accident Traveling by Private Car or Van: An Analysis of 164,790 Subjects and ," IJERPH, MDPI, vol. 17(24), pages 1-13, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9518-:d:464703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/24/9518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/24/9518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Xie, Zhixiao & Yan, Jun, 2013. "Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach," Journal of Transport Geography, Elsevier, vol. 31(C), pages 64-71.
    3. Karel G M Moons & Joris A H de Groot & Walter Bouwmeester & Yvonne Vergouwe & Susan Mallett & Douglas G Altman & Johannes B Reitsma & Gary S Collins, 2014. "Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist," PLOS Medicine, Public Library of Science, vol. 11(10), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    3. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    4. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    5. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    6. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    7. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    8. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    9. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    10. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.
    13. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    14. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    15. Lara Jehi & Xinge Ji & Alex Milinovich & Serpil Erzurum & Amy Merlino & Steve Gordon & James B Young & Michael W Kattan, 2020. "Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-15, August.
    16. Matthew Carli & Mary H. Ward & Catherine Metayer & David C. Wheeler, 2022. "Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    17. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    18. Tsai, Tsung-Han, 2016. "A Bayesian Approach to Dynamic Panel Models with Endogenous Rarely Changing Variables," Political Science Research and Methods, Cambridge University Press, vol. 4(3), pages 595-620, September.
    19. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Jiaxin Li & Zijun Zhou & Jianyu Dong & Ying Fu & Yuan Li & Ze Luan & Xin Peng, 2021. "Predicting breast cancer 5-year survival using machine learning: A systematic review," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:24:p:9518-:d:464703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.