IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p651-d1020241.html
   My bibliography  Save this article

Cost Analysis of Implementing In-Pipe Hydro Turbine in the United Arab Emirates Water Network

Author

Listed:
  • Ghaya Alawadhi

    (Department of Mechanical and Industrial Engineering, School of Engineering, American University of Ras Al Khaimah, Ras Al Khaimah 10021, United Arab Emirates)

  • Meera Almehiri

    (Department of Mechanical and Industrial Engineering, School of Engineering, American University of Ras Al Khaimah, Ras Al Khaimah 10021, United Arab Emirates)

  • Ahmad Sakhrieh

    (Department of Mechanical and Industrial Engineering, School of Engineering, American University of Ras Al Khaimah, Ras Al Khaimah 10021, United Arab Emirates
    Department of Mechanical Engineering, School of Engineering, The University of Jordan, Amman 11942, Jordan)

  • Ahmad Alshwawra

    (Institute for Technical Combustion, Leibniz Universität Hannover, 30823 Garbsen, Germany
    Mechanical and Maintenance Engineering Department, German Jordanian University, Amman 35247, Jordan)

  • Jamil Al Asfar

    (Department of Mechanical Engineering, School of Engineering, The University of Jordan, Amman 11942, Jordan)

Abstract

Water transmission lines have potential reserved energy, which is usually lost. Therefore, targeting this clean energy to produce electricity to power up the auxiliaries and utilities of water plants or consumers is financially and environmentally beneficial. This paper aims to investigate the feasibility of installing an inline hydropower system in an existing transmission water pipe. It analyzes the feasibility of implementing a mini-hydropower plant in the transmission line of Liwa’s reservoir in the UAE. The maximum possible power harvested is 218.175 kW at the given water flow rate and net head. The payback period and the return on investment are analyzed based on different scenarios related to capital investment, operation, maintenance cost, and plant capacity factor. It is found that the payback period ranges between one to six years, where the return on investment can be as high as 85%. Furthermore, the expected CO 2 emissions saving for this project is calculated to be between 395 and 1939 tons per year.

Suggested Citation

  • Ghaya Alawadhi & Meera Almehiri & Ahmad Sakhrieh & Ahmad Alshwawra & Jamil Al Asfar, 2022. "Cost Analysis of Implementing In-Pipe Hydro Turbine in the United Arab Emirates Water Network," Sustainability, MDPI, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:651-:d:1020241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Alshwawra & Ahmad Almuhtady, 2020. "Impact of Regional Conflicts on Energy Security in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 45-50.
    2. Sani, Abdollah Eskandari, 2019. "Design and synchronizing of Pelton turbine with centrifugal pump in RO package," Energy, Elsevier, vol. 172(C), pages 787-793.
    3. Crespo Chacón, Miguel & Rodríguez Díaz, Juan Antonio & García Morillo, Jorge & McNabola, Aonghus, 2020. "Hydropower energy recovery in irrigation networks: Validation of a methodology for flow prediction and pump as turbine selection," Renewable Energy, Elsevier, vol. 147(P1), pages 1728-1738.
    4. Du, Jiyun & Yang, Hongxing & Shen, Zhicheng & Chen, Jian, 2017. "Micro hydro power generation from water supply system in high rise buildings using pump as turbines," Energy, Elsevier, vol. 137(C), pages 431-440.
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine," Energy, Elsevier, vol. 172(C), pages 712-732.
    6. Gideon Johannes Bonthuys & Marco van Dijk & Giovanna Cavazzini, 2021. "Optimizing the Potential Impact of Energy Recovery and Pipe Replacement on Leakage Reduction in a Medium Sized District Metered Area," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    7. Mosè Rossi & Massimiliano Renzi & David Štefan & Sebastian Muntean, 2022. "Small-Scale Hydropower and Energy Recovery Interventions: Management, Optimization Processes and Hydraulic Machines Applications," Sustainability, MDPI, vol. 14(18), pages 1-5, September.
    8. Ahmad Sakhrieh & Jamil Al Asfar & Ahmad Ghandour & Ala a Adel, 2022. "Improving Photovoltaic Systems in Jordan Using TRIZ Principle - Overview and Case Study," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 73-78, September.
    9. Itani, Youssef & Soliman, Mohamed Reda & Kahil, Maher, 2020. "Recovering energy by hydro-turbines application in water transmission pipelines: A case study west of Saudi Arabia," Energy, Elsevier, vol. 211(C).
    10. Saber, Hossein & Mazaheri, Hesam & Ranjbar, Hossein & Moeini-Aghtaie, Moein & Lehtonen, Matti, 2021. "Utilization of in-pipe hydropower renewable energy technology and energy storage systems in mountainous distribution networks," Renewable Energy, Elsevier, vol. 172(C), pages 789-801.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kandi, Ali & Meirelles, Gustavo & Brentan, Bruno, 2022. "Employing demand prediction in pump as turbine plant design regarding energy recovery enhancement," Renewable Energy, Elsevier, vol. 187(C), pages 223-236.
    2. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2022. "Effects of impeller geometry modification on performance of pump as turbine in the urban water distribution network," Energy, Elsevier, vol. 255(C).
    3. Maria Castorino, Giulia Anna & Manservigi, Lucrezia & Barbarelli, Silvio & Losi, Enzo & Venturini, Mauro, 2023. "Development and validation of a comprehensive methodology for predicting PAT performance curves," Energy, Elsevier, vol. 274(C).
    4. Lin, Tong & Zhu, Zuchao & Li, Xiaojun & Li, Jian & Lin, Yanpi, 2021. "Theoretical, experimental, and numerical methods to predict the best efficiency point of centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 168(C), pages 31-44.
    5. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).
    6. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.
    7. Ni, Dan & Zhang, Ning & Gao, Bo & Li, Zhong & Yang, Minguan, 2020. "Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump," Energy, Elsevier, vol. 198(C).
    8. Shojaeefard, Mohammad Hassan & Saremian, Salman, 2024. "Analyzing the impact of blade geometrical parameters on energy recovery and efficiency of centrifugal pump as turbine installed in the pressure-reducing station," Energy, Elsevier, vol. 289(C).
    9. Stefanizzi, Michele & Capurso, Tommaso & Balacco, Gabriella & Binetti, Mario & Camporeale, Sergio Mario & Torresi, Marco, 2020. "Selection, control and techno-economic feasibility of Pumps as Turbines in Water Distribution Networks," Renewable Energy, Elsevier, vol. 162(C), pages 1292-1306.
    10. Itani, Youssef & Soliman, Mohamed Reda & Kahil, Maher, 2020. "Recovering energy by hydro-turbines application in water transmission pipelines: A case study west of Saudi Arabia," Energy, Elsevier, vol. 211(C).
    11. Kandi, Ali & Moghimi, Mahdi & Tahani, Mojtaba & Derakhshan, Shahram, 2021. "Optimization of pump selection for running as turbine and performance analysis within the regulation schemes," Energy, Elsevier, vol. 217(C).
    12. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    13. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    14. Hu, Zanao & Cheng, Yongguang & Chen, Hongyu & Liu, Demin & Ji, Bin & Wang, Zhiyuan & Zhang, Pengcheng & Xue, Song, 2024. "Predicting pump-turbine characteristic curves by theoretical models based on runner geometry parameters," Energy, Elsevier, vol. 301(C).
    15. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    16. Bao, Mupeng & Xie, Yudong & Zhang, Xinbiao & Ju, Jinyong & Wang, Yong, 2023. "Performance improvement of a control valve with energy harvesting," Energy, Elsevier, vol. 263(PC).
    17. Ullah, Sana & Gozgor, Giray & Lu, Zhou, 2024. "How do conflicts affect energy security risk? Evidence from major energy-consuming economies," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 175-187.
    18. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    19. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    20. Erkan, Onur & Özkan, Musa & Karakoç, T. Hikmet & Garrett, Stephen J. & Thomas, Peter J., 2020. "Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method," Renewable Energy, Elsevier, vol. 161(C), pages 1359-1367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:651-:d:1020241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.