IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p260-d1013355.html
   My bibliography  Save this article

Modelling and Mapping Coastal Protection: Adapting an EU-Wide Model to National Specificities

Author

Listed:
  • Mahbub Ul Hasan

    (Climate and Hydrological Analyst, Oxfam GB, Mohakhali 1206, Bangladesh)

  • Evangelia G. Drakou

    (Department of Geography, Harokopio University of Athens, 16767 Kallithea, Greece)

  • Efthimios Karymbalis

    (Department of Geography, Harokopio University of Athens, 16767 Kallithea, Greece)

  • Alexandra Tragaki

    (Department of Geography, Harokopio University of Athens, 16767 Kallithea, Greece)

  • Christina Gallousi

    (Department of Geography, Harokopio University of Athens, 16767 Kallithea, Greece)

  • Camino Liquete

    (Joint Research Center, European Commission, 21027 Ispra, Italy)

Abstract

We explore the requirements for adapting coastal protection EU-wide indicators nationally. The aim of this research is threefold: (a) to map coastal protection at the national level; (b) to assess the congruence between the regional and national coastal protection estimates; and (c) to qualitatively assess the congruence of our findings with subnational estimates. We assessed coastal protection capacity, exposure, and demand and adapted them for the coastal zone of Greece. We quantitatively compared our findings with the results of the EU model. Through visual interpretation, we compared national estimates with those for the coastal zone of Peloponnese. Most islands have lower protection capacity than the mainland areas, while the southern part of the country’s coastal zone is the most exposed to natural hazards. Higher coastal protection demand was detected in the country’s largest cities (Athens, Thessaloniki). Areas of attention for management were small and medium islands and urban centres, as they mostly revealed high demand and exposure but the lowest natural capacity. The differences observed in the modelling outputs across scales are attributed to the differences in the demarcation process of the coastal zone, the additional variables considered, the terminology used, and the experts involved. Such national adaptations should be considered in order to build or update EU-wide indicators for coastal protection and beyond, towards a rule-based rather than a one-size-fits-all methodology.

Suggested Citation

  • Mahbub Ul Hasan & Evangelia G. Drakou & Efthimios Karymbalis & Alexandra Tragaki & Christina Gallousi & Camino Liquete, 2022. "Modelling and Mapping Coastal Protection: Adapting an EU-Wide Model to National Specificities," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:260-:d:1013355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bosello, Francesco & Eboli, Fabio & Pierfederici, Roberta, 2012. "Assessing the Economic Impacts of Climate Change. An Updated CGE Point of View," Climate Change and Sustainable Development 121700, Fondazione Eni Enrico Mattei (FEEM).
    2. Roberto Roson & Dominique Van der Mensbrugghe, 2012. "Climate change and economic growth: impacts and interactions," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 4(3), pages 270-285.
    3. Richard Tol, 2012. "On the Uncertainty About the Total Economic Impact of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(1), pages 97-116, September.
    4. Francesco Bosello & Robert Nicholls & Julie Richards & Roberto Roson & Richard Tol, 2012. "Economic impacts of climate change in Europe: sea-level rise," Climatic Change, Springer, vol. 112(1), pages 63-81, May.
    5. Alexandra Tragaki & Christina Gallousi & Efthimios Karymbalis, 2018. "Coastal Hazard Vulnerability Assessment Based on Geomorphic, Oceanographic and Demographic Parameters: The Case of the Peloponnese (Southern Greece)," Land, MDPI, vol. 7(2), pages 1-16, May.
    6. Francesco Bosello & Fabio Eboli & Roberta Pierfederici, 2012. "Assessing the Economic Impacts of Climate Change," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, February.
    7. Roberto Roson & Dominique Van der Mensbrugghe, 2012. "Climate change and economic growth: impacts and interactions," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 4(3), pages 270-285.
    8. Christine C Shepard & Caitlin M Crain & Michael W Beck, 2011. "The Protective Role of Coastal Marshes: A Systematic Review and Meta-analysis," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra Shekhar Dwivedi & Shiva Teja Pampattiwar & Arvind Chandra Pandey & Bikash Ranjan Parida & Debashis Mitra & Navneet Kumar, 2023. "Characterization of the Coastal Vulnerability in Different Geological Settings: A Comparative Study on Kerala and Tamil Nadu Coasts Using FuzzyAHP," Sustainability, MDPI, vol. 15(12), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S. J. Tol & Robert J. Nicholls & Sally Brown & Jochen Hinkel & Athanasios T. Vafeidis & Tom Spencer & Mark Schuerch, 2016. "Comment on ‘The Global Impacts of Extreme Sea-Level Rise: A Comprehensive Economic Assessment’," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 341-344, June.
    2. Valeria Costantini & Anil Markandya & Elena Paglialunga & Giorgia Sforna, 2018. "Impact and distribution of climatic damages: a methodological proposal with a dynamic CGE model applied to global climate negotiations," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 809-843, December.
    3. Gabriele Standardi, 2023. "Exploring market-driven adaptation to climate change in a general equilibrium global trade model," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-29, February.
    4. Standardi, Gabriele & Dasgupta, Shouro, 2020. "Welfare implications of increasing spatial resolution in national CGE models for climate change impact assessment," Conference papers 333202, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Richard Tol, 2015. "Bootstraps for Meta-Analysis with an Application to the Impact of Climate Change," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 287-303, August.
    6. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 09916, Department of Economics, University of Sussex Business School.
    7. Richard S. J. Tol, 2016. "The Impacts Of Climate Change According To The Ipcc," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-20, February.
    8. Theodoros N. Chatzivasileiadis & Marjan W. Hofkes & Onno J. Kuik & Richard S.J. Tol, 2016. "Full economic impacts of sea level rise: loss of productive resources and transport disruptions," Working Paper Series 9916, Department of Economics, University of Sussex.
    9. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Eshita Gupta & Bharat Ramaswami & E. Somanathan, 2021. "The Distributional Impact of Climate Change: Why Food Prices Matter," Economics of Disasters and Climate Change, Springer, vol. 5(2), pages 249-275, July.
    11. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    12. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Department of Economics Working Papers 2019-04, Department of Economics, Williams College.
    13. Tol, Richard S.J., 2019. "A social cost of carbon for (almost) every country," Energy Economics, Elsevier, vol. 83(C), pages 555-566.
    14. Osamu Nishiura & Makoto Tamura & Shinichiro Fujimori & Kiyoshi Takahashi & Junya Takakura & Yasuaki Hijioka, 2020. "An Assessment of Global Macroeconomic Impacts Caused by Sea Level Rise Using the Framework of Shared Socioeconomic Pathways and Representative Concentration Pathways," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    15. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    16. Wei Xie & Qi Cui & Tariq Ali, 2019. "Role of market agents in mitigating the climate change effects on food economy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1215-1231, December.
    17. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2023. "Enter the MATRIX model:a Multi-Agent model for Transition Risks with application to energy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    18. Peter H. Howard & Thomas Sterner, 2017. "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 197-225, September.
    19. Roson, Roberto & Damania, Richard, 2017. "The macroeconomic impact of future water scarcity," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1141-1162.
    20. Roberto Roson & Richard Damania, the World Bank, Washington D.C., 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity," EcoMod2016 9167, EcoMod.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:260-:d:1013355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.