Smart Elderly Care Services in China: Challenges, Progress, and Policy Development
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hui Zhang & Yongyi Wang & Dan Wu & Jiangping Chen, 2018. "Evolutionary Path of Factors Influencing Life Satisfaction among Chinese Elderly: A Perspective of Data Visualization," Data, MDPI, vol. 3(3), pages 1-20, September.
- Yu, Biying & Sun, Feihu & Chen, Chen & Fu, Guanpeng & Hu, Lin, 2022. "Power demand response in the context of smart home application," Energy, Elsevier, vol. 240(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tim Arlinghaus & Kevin Kus & Patricia Kajüter Rodrigues & Frank Teuteberg, 2023. "Visualizing Benefits of Case Management Software Using Utility Effect Chains," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ruben Barreto & Calvin Gonçalves & Luis Gomes & Pedro Faria & Zita Vale, 2022. "Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response," Energies, MDPI, vol. 15(7), pages 1-18, March.
- Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
- Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
- Junpei Nan & Jieran Feng & Xu Deng & Chao Wang & Ke Sun & Hao Zhou, 2022. "Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method," Energies, MDPI, vol. 15(15), pages 1-17, July.
- Nilsson, Anders & Bartusch, Cajsa, 2024. "Empowered or enchained? Exploring consumer perspectives on Direct Load Control," Energy Policy, Elsevier, vol. 192(C).
- Fupeng Zhang & Lei Shi & Simian Liu & Jiaqi Shi & Mengfei Cheng & Tansheng Xiang, 2022. "The Ancient Town Residential Environment of the Elderly in Xiangxi Tujia: Survey, Questions, and Recommendations," IJERPH, MDPI, vol. 19(17), pages 1-25, August.
- Jieran Feng & Junpei Nan & Chao Wang & Ke Sun & Xu Deng & Hao Zhou, 2022. "Source-Load Coordinated Low-Carbon Economic Dispatch of Electric-Gas Integrated Energy System Based on Carbon Emission Flow Theory," Energies, MDPI, vol. 15(10), pages 1-24, May.
- Ma, Nan & Waegel, Alex & Hakkarainen, Max & Braham, William W. & Glass, Lior & Aviv, Dorit, 2023. "Blockchain + IoT sensor network to measure, evaluate and incentivize personal environmental accounting and efficient energy use in indoor spaces," Applied Energy, Elsevier, vol. 332(C).
- Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
- Saberi-Beglar, Kasra & Zare, Kazem & Seyedi, Heresh & Marzband, Mousa & Nojavan, Sayyad, 2023. "Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads," Applied Energy, Elsevier, vol. 329(C).
- Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).
- Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Residential consumer preferences to demand response: Analysis of different motivators to enroll in direct load control demand response," Energy Policy, Elsevier, vol. 173(C).
- Shi, Renwei & Jiao, Zaibin, 2023. "Individual household demand response potential evaluation and identification based on machine learning algorithms," Energy, Elsevier, vol. 266(C).
More about this item
Keywords
sustainable development; ageing; technological development; policy development; China;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:178-:d:1011719. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.