IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6829-d830881.html
   My bibliography  Save this article

XGBoost-DNN Mixed Model for Predicting Driver’s Estimation on the Relative Motion States during Lane-Changing Decisions: A Real Driving Study on the Highway

Author

Listed:
  • Chen Zhao

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Xia Zhao

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Zhao Li

    (School of Automobile, Chang’an University, Xi’an 710064, China)

  • Qiong Zhang

    (China Communications Press Co., Ltd., Beijing 100101, China)

Abstract

This study is conducted on a real live highway to investigate the driver’s performance in estimating the speed and distance of vehicles behind the target lane during lane changes. Data on the participants’ estimated and actual data on the rear car were collected in the experiment. Ridge regression is used to analyze the effects of both the driver’s features, as well as the relative and absolute motion characteristics between the target vehicle and the subject vehicle, on the driver’s estimation outcomes. Finally, a mixed algorithm of extreme gradient boosting (XGBoost) and deep neural network (DNN) was proposed in this paper for establishing driver’s speed estimation and distance prediction models. Compared with other machine learning models, the XGBoost-DNN prediction model performs more accurate prediction performance in both classification scenarios. It is worth mentioning that the XGBoost-DNN mixed model exhibits a prediction accuracy approximately two percentage points higher than that of the XGBoost model. In the two-classification scenarios, the accuracy estimations of XGBoost-DNN speed and distance prediction models are 91.03% and 92.46%, respectively. In the three-classification scenarios, the accuracy estimations of XGBoost-DNN speed and distance prediction models are 87.18% and 87.59%, respectively. This study can provide a theoretical basis for the development of warning rules for lane-change warning systems as well as insights for understanding lane-change decision failures.

Suggested Citation

  • Chen Zhao & Xia Zhao & Zhao Li & Qiong Zhang, 2022. "XGBoost-DNN Mixed Model for Predicting Driver’s Estimation on the Relative Motion States during Lane-Changing Decisions: A Real Driving Study on the Highway," Sustainability, MDPI, vol. 14(11), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6829-:d:830881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    2. Robert J. Snowden & Nicola Stimpson & Roy A. Ruddle, 1998. "Speed perception fogs up as visibility drops," Nature, Nature, vol. 392(6675), pages 450-450, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingjie Jin & Guihua Zeng & Zhilin Lu & Hongqiao Peng & Shuxin Luo & Xinhe Yang & Haojun Zhu & Mingbo Liu, 2022. "Hybrid LSTM–BPNN-to-BPNN Model Considering Multi-Source Information for Forecasting Medium- and Long-Term Electricity Peak Load," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    3. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    4. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    5. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    6. Oreshkin, Boris N. & Dudek, Grzegorz & Pełka, Paweł & Turkina, Ekaterina, 2021. "N-BEATS neural network for mid-term electricity load forecasting," Applied Energy, Elsevier, vol. 293(C).
    7. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    8. Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
    9. Shouxiang Wang & Pengfei Dong & Yingjie Tian, 2017. "A Novel Method of Statistical Line Loss Estimation for Distribution Feeders Based on Feeder Cluster and Modified XGBoost," Energies, MDPI, vol. 10(12), pages 1-17, December.
    10. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    11. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    12. Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
    13. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    14. Zhao, Yin & Gong, Mingju & Sun, Jiawang & Han, Cuitian & Jing, Lei & Li, Bo & Zhao, Zhixuan, 2023. "A new hybrid optimization prediction strategy based on SH-Informer for district heating system," Energy, Elsevier, vol. 282(C).
    15. Luyu Ding & Yang Lv & Ruixiang Jiang & Wenjie Zhao & Qifeng Li & Baozhu Yang & Ligen Yu & Weihong Ma & Ronghua Gao & Qinyang Yu, 2022. "Predicting the Feed Intake of Cattle Based on Jaw Movement Using a Triaxial Accelerometer," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    16. Zheng Wan & Hui Li, 2023. "Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples," Energies, MDPI, vol. 16(10), pages 1-22, May.
    17. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    18. Yu, Binbin & Li, Jianjing & Liu, Che & Sun, Bo, 2022. "A novel short-term electrical load forecasting framework with intelligent feature engineering," Applied Energy, Elsevier, vol. 327(C).
    19. Wei, Nan & Yin, Chuang & Yin, Lihua & Tan, Jingyi & Liu, Jinyuan & Wang, Shouxi & Qiao, Weibiao & Zeng, Fanhua, 2024. "Short-term load forecasting based on WM algorithm and transfer learning model," Applied Energy, Elsevier, vol. 353(PA).
    20. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6829-:d:830881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.