IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5723-d811588.html
   My bibliography  Save this article

Evolutionary Game Analysis of Energy-Saving Renovations of Existing Rural Residential Buildings from the Perspective of Stakeholders

Author

Listed:
  • Ming-Qiang Huang

    (School of Civil Engineering & Architecture, Xiamen University of Technology, Xiamen 361024, China)

  • Rui-Juan Lin

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

Abstract

To promote the orderly development of energy-saving renovations of existing rural residential buildings, it is necessary to coordinate the interests of various stakeholders. This study selects three key stakeholders—the government, energy-saving service enterprises and rural residents—as the research subjects and analyzes their interests and rights. In the meantime, a tripartite evolutionary game model is constructed to analyze the evolutionary rules and evolutionary stable strategies of tripartite behaviors, on the basis of which the influencing factors are analyzed. The research results show that: (1) as the supervisor and advocate of energy-saving renovations in existing rural residential buildings, the government, by adopting subsidies and fines, effectively fosters enthusiasm about energy-saving service enterprises among rural residents, encouraging them to participate in energy-saving renovations of existing rural residential buildings; (2) when the income of energy-saving renovations exceeds their cost, changes in the initial willingness ratio of the stakeholders, the government subsidies and fines only affect the evolution of the system so that it reaches a balanced and stable state, without changing the three parties’ behavioral strategy choices in the game; (3) when the income from energy-saving renovations is lower than the cost, the behavioral strategies of the three parties in the game are all uncooperative; (4) key factors affecting tripartite cooperation in the game are as follows: government subsidies and fines, the overall interests of society, government supervision costs, loss of corporate image, standardization of the skills and services provided by enterprises, and willingness of rural residents to participate in the transformation.

Suggested Citation

  • Ming-Qiang Huang & Rui-Juan Lin, 2022. "Evolutionary Game Analysis of Energy-Saving Renovations of Existing Rural Residential Buildings from the Perspective of Stakeholders," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5723-:d:811588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richarz, Jan & Henn, Sarah & Osterhage, Tanja & Müller, Dirk, 2022. "Optimal scheduling of modernization measures for typical non-residential buildings," Energy, Elsevier, vol. 238(PA).
    2. Ouyang, Jinlong & Ge, Jian & Hokao, Kazunori, 2009. "Economic analysis of energy-saving renovation measures for urban existing residential buildings in China based on thermal simulation and site investigation," Energy Policy, Elsevier, vol. 37(1), pages 140-149, January.
    3. Yung Yau & Huiying (Cynthia) Hou & Ka Chi Yip & Queena Kun Qian, 2021. "Transaction Cost and Agency Perspectives on Eco-Certification of Existing Buildings: A Study of Hong Kong," Energies, MDPI, vol. 14(19), pages 1-20, October.
    4. Beata Sadowska & Joanna Piotrowska-Woroniak & Grzegorz Woroniak & Wiesław Sarosiek, 2022. "Energy and Economic Efficiency of the Thermomodernization of an Educational Building and Reduction of Pollutant Emissions—A Case Study," Energies, MDPI, vol. 15(8), pages 1-31, April.
    5. Pan, Wei & Garmston, Helen, 2012. "Compliance with building energy regulations for new-build dwellings," Energy, Elsevier, vol. 48(1), pages 11-22.
    6. Hitoshi Yamamoto & Kazunari Ishida & Toshizumi Ohta, 2004. "Modeling Reputation Management System on Online C2C Market," Computational and Mathematical Organization Theory, Springer, vol. 10(2), pages 165-178, July.
    7. Zeng, Xianyang & Ma, Yitai & Ma, Lirong, 2007. "Utilization of straw in biomass energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 976-987, June.
    8. Morelli, Martin & Harrestrup, Maria & Svendsen, Svend, 2014. "Method for a component-based economic optimisation in design of whole building renovation versus demolishing and rebuilding," Energy Policy, Elsevier, vol. 65(C), pages 305-314.
    9. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Evans, Meredydd & Yu, Sha & Song, Bo & Deng, Qinqin & Liu, Jing & Delgado, Alison, 2014. "Building energy efficiency in rural China," Energy Policy, Elsevier, vol. 64(C), pages 243-251.
    11. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.
    12. He, Bao-jie & Yang, Li & Ye, Miao & Mou, Ben & Zhou, Yanan, 2014. "Overview of rural building energy efficiency in China," Energy Policy, Elsevier, vol. 69(C), pages 385-396.
    13. Man Ying (Annie) Ho & Joseph H. K. Lai & Huiying (Cynthia) Hou & Dadi Zhang, 2021. "Key Performance Indicators for Evaluation of Commercial Building Retrofits: Shortlisting via an Industry Survey," Energies, MDPI, vol. 14(21), pages 1-30, November.
    14. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    15. Jakob, Martin, 2006. "Marginal costs and co-benefits of energy efficiency investments: The case of the Swiss residential sector," Energy Policy, Elsevier, vol. 34(2), pages 172-187, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    2. Zihan Zhang & Junkang Song & Wanjiang Wang, 2023. "Study on the Behavior Strategy of the Subject of Low-Carbon Retrofit of Residential Buildings Based on Tripartite Evolutionary Game," Sustainability, MDPI, vol. 15(9), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhang & Shan Guo & Zezhou Wu & Ahmed Alsaedi & Tasawar Hayat, 2018. "SWOT Analysis for the Promotion of Energy Efficiency in Rural Buildings: A Case Study of China," Energies, MDPI, vol. 11(4), pages 1-17, April.
    2. Li, Minqi & Lin, Zhongqi & Sun, Yongjun & Wu, Fengping & Xu, Tao & Wu, Huijun & Zhou, Xiaoqing & Wang, Dengjia & Liu, Yanfeng, 2020. "Preparation and characterizations of a novel temperature-tuned phase change material based on sodium acetate trihydrate for improved performance of heat pump systems," Renewable Energy, Elsevier, vol. 157(C), pages 670-677.
    3. Gan, Xiaolong & Liu, Lanchi & Wen, Tao & Webber, Ronald, 2022. "Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL," Technology in Society, Elsevier, vol. 70(C).
    4. Yanqiu Cui & Ninghan Sun & Hongbin Cai & Simeng Li, 2020. "Indoor Temperature Improvement and Energy-Saving Renovations in Rural Houses of China’s Cold Region—A Case Study of Shandong Province," Energies, MDPI, vol. 13(4), pages 1-26, February.
    5. Gang Yao & Yuan Chen & Wenchi Xie & Nan Chen & Yue Rui & Pingjia Luo, 2022. "Research on Collaborative Design of Performance-Refined Zero Energy Building: A Case Study," Energies, MDPI, vol. 15(19), pages 1-30, September.
    6. Krzysztof Szczotka & Anna Barwińska-Małajowicz & Jakub Szymiczek & Radosław Pyrek, 2023. "Thermomodernization as a Mechanism for Improving Energy Efficiency and Reducing Emissions of Pollutants into the Atmosphere in a Public Utility Building," Energies, MDPI, vol. 16(13), pages 1-24, June.
    7. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    8. Friege, Jonas & Chappin, Emile, 2014. "Modelling decisions on energy-efficient renovations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 196-208.
    9. Aisikaer Molake & Rui Zhang & Yihuan Zhou, 2023. "Multi-Objective Optimization of Daylight Performance and Thermal Comfort of Enclosed-Courtyard Rural Residence in a Cold Climate Zone, China," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    10. He, Bao-jie & Yang, Li & Ye, Miao & Mou, Ben & Zhou, Yanan, 2014. "Overview of rural building energy efficiency in China," Energy Policy, Elsevier, vol. 69(C), pages 385-396.
    11. Jingyuan Shi & Jiaqing Sun, 2023. "Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    12. Kapsalis, Vasileios & Maduta, Carmen & Skandalos, Nikolaos & Wang, Meng & Bhuvad, Sushant Suresh & D'Agostino, Delia & Ma, Tao & Raj, Uday & Parker, Danny & Peng, Jinqing & Karamanis, Dimitris, 2024. "Critical assessment of large-scale rooftop photovoltaics deployment in the global urban environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Shilei Lu & Xiaolei Tang & Liran Ji & Daixin Tu, 2017. "Research on Energy-Saving Optimization for the Performance Parameters of Rural-Building Shape and Envelope by TRNSYS-GenOpt in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 9(2), pages 1-18, February.
    14. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    15. Wesam Salah Alaloul & Muhammad Altaf & Muhammad Ali Musarat & Muhammad Faisal Javed & Amir Mosavi, 2021. "Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study," Sustainability, MDPI, vol. 13(8), pages 1-38, April.
    16. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    17. Guozhong Zheng & Wentao Bu, 2018. "Review of Heating Methods for Rural Houses in China," Energies, MDPI, vol. 11(12), pages 1-18, December.
    18. Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
    19. Yao, Jian, 2020. "Uncertainty of building energy performance at spatio-temporal scales: A comparison of aggregated and disaggregated behavior models of solar shade control," Energy, Elsevier, vol. 195(C).
    20. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5723-:d:811588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.