IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5373-d805559.html
   My bibliography  Save this article

Analysis of Main Factors on Evaluation and Selection of Wet Waste Disposal Modes: A Case Study of Universities in Shanghai, China

Author

Listed:
  • Jihaoming Zou

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

  • Zhen Zhang

    (Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

Abstract

This paper explores greenhouse gas emission intensity and economy of centralized and on-site wet waste disposal mode, while comprehensively evaluating the two modes for decision-making. Based on the fieldwork in Shanghai’s 20 campuses of 15 universities, multiple scenarios that can reflect the different levels of technology and management in reality, were set for the following studies. The greenhouse gas emissions generated from centralized and on-site disposal modes of wet waste were calculated in two emission scenarios using Life Cycle Assessment, Life Cycle Inventory, and the IPCC 2006 method. Additionally, the continuous cost input from the universities for the two disposal modes was analyzed in three cost-input scenarios using the Net Present Value method. Furthermore, a comprehensive evaluation of the two modes was also conducted by using Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation under the five main factors of greenhouse gas emission—control, economy, stability, education and innovation, and bargaining power for municipal sanitation departments. The results revealed that the centralized disposal mode is superior to the on-site disposal mode in terms of greenhouse gas emission control and economy. The centralized disposal mode is a more rational choice due to the better comprehensive evaluation performance. It was also emphasized that the construction of the wet waste disposal system is so complicated that the academic community and the policymakers may have to pay more attention to the integration of system design, industrial development, and other aspects of wet waste disposal.

Suggested Citation

  • Jihaoming Zou & Zhen Zhang, 2022. "Analysis of Main Factors on Evaluation and Selection of Wet Waste Disposal Modes: A Case Study of Universities in Shanghai, China," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5373-:d:805559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Turner, David A. & Williams, Ian D. & Kemp, Simon, 2015. "Greenhouse gas emission factors for recycling of source-segregated waste materials," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 186-197.
    2. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    3. Yang, Tianxue & Li, Yingjun & Gao, Jixi & Huang, Caihong & Chen, Bin & Zhang, Lieyu & Wang, Xiaowei & Zhao, Ying & Xi, Beidou & Li, Xiang, 2015. "Performance of dry anaerobic technology in the co-digestion of rural organic solid wastes in China," Energy, Elsevier, vol. 93(P2), pages 2497-2502.
    4. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    5. Jin, Yiying & Chen, Ting & Chen, Xin & Yu, Zhixin, 2015. "Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant," Applied Energy, Elsevier, vol. 151(C), pages 227-236.
    6. Du, Mingxi & Peng, Changhui & Wang, Xiaoge & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2017. "Quantification of methane emissions from municipal solid waste landfills in China during the past decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 272-279.
    7. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiyao Ni & Zhen Zhang, 2024. "Comparison and Selection of Wet Waste Disposal Modes for Villages in Agriculture-Related Towns Taking Shanghai, China, as an Example," Sustainability, MDPI, vol. 16(12), pages 1-21, June.
    2. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    3. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    4. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Zhuang, Rui & Wang, Xiaonan & Guo, Miao & Zhao, Yingru & El-Farra, Nael H. & Palazoglu, Ahmet, 2020. "Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2," Applied Energy, Elsevier, vol. 259(C).
    6. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    7. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    8. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    9. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    10. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    11. Svetlana Zueva & Andrey A. Kovalev & Yury V. Litti & Nicolò M. Ippolito & Valentina Innocenzi & Ida De Michelis, 2021. "Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia," Energies, MDPI, vol. 14(17), pages 1-8, August.
    12. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    13. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    14. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    15. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    16. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    17. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    18. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    19. Renata Toczyłowska-Mamińska & Mariusz Ł. Mamiński, 2022. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology," Energies, MDPI, vol. 15(19), pages 1-14, September.
    20. Kadir Kaan GÖNCÜ & Onur ÇETIN, 2022. "Evaluation Of Location Selection Criteria For Coordination Management Centers And Logistic Support Units In Disaster Areas With Ahp Method," Prizren Social Science Journal, SHIKS, vol. 6(2), pages 15-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5373-:d:805559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.