IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5244-d620987.html
   My bibliography  Save this article

Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia

Author

Listed:
  • Svetlana Zueva

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Andrey A. Kovalev

    (Department of Renewable Energy, Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia)

  • Yury V. Litti

    (Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia)

  • Nicolò M. Ippolito

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Valentina Innocenzi

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

  • Ida De Michelis

    (Department of Industrial and Information Engineering and Economics, University of L’Aquila, 67100 L’Aquila, Italy)

Abstract

According to the International Energy Agency (IEA), only a tiny fraction of the full potential of energy from biomass is currently exploited in the world. Biogas is a good source of energy and heat, and a clean fuel. Converting it to biomethane creates a product that combines all the benefits of natural gas with zero greenhouse gas emissions. This is important given that the methane contained in biogas is a more potent greenhouse gas than carbon dioxide (CO 2 ). The total amount of CO 2 emission avoided due to the installation of biogas plants is around 3380 ton/year, as 1 m 3 of biogas corresponds to 0.70 kg of CO 2 saved. In Russia, despite the huge potential, the development of bioenergy is rather on the periphery, due to the abundance of cheap hydrocarbons and the lack of government support. Based on the data from an agro-industrial plant located in Central Russia, the authors of the article demonstrate that biogas technologies could be successfully used in Russia, provided that the Russian Government adopted Western-type measures of financial incentives.

Suggested Citation

  • Svetlana Zueva & Andrey A. Kovalev & Yury V. Litti & Nicolò M. Ippolito & Valentina Innocenzi & Ida De Michelis, 2021. "Environmental and Economic Aspects of Biomethane Production from Organic Waste in Russia," Energies, MDPI, vol. 14(17), pages 1-8, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5244-:d:620987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ciro Florio & Gabriella Fiorentino & Fabiana Corcelli & Sergio Ulgiati & Stefano Dumontet & Joshua Güsewell & Ludger Eltrop, 2019. "A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies," Energies, MDPI, vol. 12(4), pages 1-12, February.
    2. Gianluca Caposciutti & Andrea Baccioli & Lorenzo Ferrari & Umberto Desideri, 2020. "Biogas from Anaerobic Digestion: Power Generation or Biomethane Production?," Energies, MDPI, vol. 13(3), pages 1-15, February.
    3. Yanran Fu & Tao Luo & Zili Mei & Jiang Li & Kun Qiu & Yihong Ge, 2018. "Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Di Giacomo, 2021. "Material and Energy Recovery from the Final Disposal of Organic Waste," Energies, MDPI, vol. 14(24), pages 1-2, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    2. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    4. Sylwia Myszograj, 2019. "Biogas and Methane Potential of Pre-Thermally Disintegrated Bio-Waste," Energies, MDPI, vol. 12(20), pages 1-12, October.
    5. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    6. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    7. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    8. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk & Grzegorz Zając & Martin J. Wassen, 2023. "Grass from Road Verges as a Substrate for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-23, June.
    9. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Yiyun Liu & Jun Wu & Jianjun Li & Jingjing Huang, 2023. "The Diffusion Rule of Demand-Oriented Biogas Supply in Distributed Renewable Energy System: An Evolutionary Game-Based Approach," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    11. Chenyujing Yang & Yuanyuan Zhang & Yanjin Xue & Yongji Xue, 2022. "Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    12. Giulia Grisolia & Debora Fino & Umberto Lucia, 2022. "Biomethanation of Rice Straw: A Sustainable Perspective for the Valorisation of a Field Residue in the Energy Sector," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    13. Meng, Xingyao & Wang, Qingping & Zhao, Xixi & Cai, Yafan & Ma, Xuguang & Fu, Jingyi & Wang, Pan & Wang, Yongjing & Liu, Wei & Ren, Lianhai, 2023. "A review of the technologies used for preserving anaerobic digestion inoculum," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Biogas from Agri-Food and Agricultural Waste Can Appreciate Agro-Ecosystem Services: The Case Study of Emilia Romagna Region," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    15. Usama Konbr & Walid Bayoumi & Mohamed N. Ali & Ahmed Salah Eldin Shiba, 2022. "Sustainability of Egyptian Cities through Utilizing Sewage and Sludge in Softscaping and Biogas Production," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    16. Liu, Yang & Xi, Yonglan & Ye, Xiaomei & Zhang, Yingpeng & Wang, Chengcheng & Jia, Zhaoyan & Cao, Chunhui & Han, Ting & Du, Jing & Kong, Xiangping & Chen, Zhongbing, 2024. "Composite nanofiber membranes to enhance the performance of high solids anaerobic digestion of organic rural household waste resources," Renewable Energy, Elsevier, vol. 220(C).
    17. Aravani, Vasiliki P. & Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Wang, Wen & Anagnostopoulos, George & Syriopoulos, George & Charisiou, Nikolaos D. & Goula, Maria A. & Kornaros, Michael & Papadakis,, 2022. "Agricultural and livestock sector's residues in Greece & China: Comparative qualitative and quantitative characterization for assessing their potential for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Siti Norliyana Harun & Marlia Mohd Hanafiah & Noorashikin Md Noor, 2022. "Rice Straw Utilisation for Bioenergy Production: A Brief Overview," Energies, MDPI, vol. 15(15), pages 1-17, July.
    19. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Li, Wangliang & Gupta, Rohit & Zhang, Zhikai & Cao, Lixia & Li, Yanqing & Show, Pau Loke & Gupta, Vijai Kumar & Kumar, Sunil & Lin, Kun-Yi Andrew & Varjani, Sunita & Connelly, Stephanie & You, Siming, 2023. "A review of high-solid anaerobic digestion (HSAD): From transport phenomena to process design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5244-:d:620987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.