IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p902-d1024591.html
   My bibliography  Save this article

Optimising the Distribution of Multi-Cycle Emergency Supplies after a Disaster

Author

Listed:
  • Fuyu Wang

    (School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, China)

  • Xuefei Ge

    (School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, China)

  • Yan Li

    (School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, China)

  • Jingjing Zheng

    (School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, China)

  • Weichen Zheng

    (School of Management Science and Engineering, Anhui University of Technology, Maanshan 243032, China)

Abstract

In order to achieve rapid and fair distribution of emergency supplies after a large-scale sudden disaster, this paper constructs a comprehensive time perception satisfaction function and a comprehensive material loss pain function to portray the perceived satisfaction of disaster victims based on objective constraints such as limited transport, multimodal transport and supply being less than demand, and at the same time considers the subjective perception of time and material quantity of disaster victims under limited rational conditions, and constructs a multi-objective optimisation model for the dispatch of multi-cycle emergency supplies by combining comprehensive rescue cost information. For the characteristics of the proposed model, based on the NSGA-II algorithm, generalized reverse learning strategy, coding repair strategy, improved adaptive crossover, variation strategy, and elite retention strategy are introduced. Based on this, we use the real data of the 2008 Wenchuan earthquake combined with simulated data to design corresponding cases for validation and comparison with the basic NSGA-II algorithm, SPEA-II and MOPSO algorithms. The results show that the proposed model and algorithm can effectively solve the large-scale post-disaster emergency resource allocation problem, and the improved NSGA- II algorithm has better performance.

Suggested Citation

  • Fuyu Wang & Xuefei Ge & Yan Li & Jingjing Zheng & Weichen Zheng, 2023. "Optimising the Distribution of Multi-Cycle Emergency Supplies after a Disaster," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:902-:d:1024591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/902/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/902/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    2. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    3. Haghani, Ali & Oh, Sei-Chang, 1996. "Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(3), pages 231-250, May.
    4. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    5. Lijing Du & Xiaohuan Li & Yuan Gan & Kaijun Leng, 2022. "Optimal Model and Algorithm of Medical Materials Delivery Drone Routing Problem under Major Public Health Emergencies," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    2. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    3. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    4. Rawls, Carmen G. & Turnquist, Mark A., 2012. "Pre-positioning and dynamic delivery planning for short-term response following a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 46-54.
    5. Widener, Michael J. & Horner, Mark W., 2011. "A hierarchical approach to modeling hurricane disaster relief goods distribution," Journal of Transport Geography, Elsevier, vol. 19(4), pages 821-828.
    6. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    7. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    8. Najafi, Mehdi & Eshghi, Kourosh & Dullaert, Wout, 2013. "A multi-objective robust optimization model for logistics planning in the earthquake response phase," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 217-249.
    9. Junhu Ruan & Xuping Wang & Yan Shi, 2014. "A Two-Stage Approach for Medical Supplies Intermodal Transportation in Large-Scale Disaster Responses," IJERPH, MDPI, vol. 11(11), pages 1-29, October.
    10. He, Yuxuan & Liu, Nan, 2015. "Methodology of emergency medical logistics for public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 178-200.
    11. N Görmez & M Köksalan & F S Salman, 2011. "Locating disaster response facilities in Istanbul," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1239-1252, July.
    12. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    13. N C Simpson & P G Hancock, 2009. "Fifty years of operational research and emergency response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 126-139, May.
    14. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    15. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    16. Yi Feng & Shaoze Cui, 2021. "A review of emergency response in disasters: present and future perspectives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 1109-1138, January.
    17. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    18. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    19. Wang, Qingyi & Liu, Zhuomeng & Jiang, Peng & Luo, Li, 2022. "A stochastic programming model for emergency supplies pre-positioning, transshipment and procurement in a regional healthcare coalition," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    20. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:902-:d:1024591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.