IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4376-d1084378.html
   My bibliography  Save this article

Dynamic Vehicle Routing Problem with Fuzzy Customer Response

Author

Listed:
  • Gitae Kim

    (Department of Industrial Management Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)

Abstract

This paper proposes a dynamic vehicle routing problem (DVRP) model with fuzzy customer responses and suggests optimal routing strategies. Most DVRP studies have focused on how to create a new route upon the occurrence of dynamic situations such as unexpected demands. However, the customer responses have received little attention. When a pop-up demand is added to one of the planned routes, the service for some optimally planned demands may be delayed. Customers may file complaints or cancel their orders as a result of the delays. As a result, the customer response has a significant impact on current profits as well as future demands. In this research, we consider the customer response in DVRP and address it with a fuzzy number. Changing distances or defining time windows can resolve the problem of customer response. The customer responses are represented by a fuzzy rule. The new routing strategy provides the viability to reduce customer complaints and avoid losing potential customers.

Suggested Citation

  • Gitae Kim, 2023. "Dynamic Vehicle Routing Problem with Fuzzy Customer Response," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4376-:d:1084378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 14(2), pages 130-154, May.
    2. Jingling Zhang & Wanliang Wang & Yanwei Zhao & Carlo Cattani, 2012. "Multiobjective Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Customer Satisfaction," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-19, December.
    3. Dimitris J. Bertsimas & Garrett van Ryzin, 1993. "Stochastic and Dynamic Vehicle Routing in the Euclidean Plane with Multiple Capacitated Vehicles," Operations Research, INFORMS, vol. 41(1), pages 60-76, February.
    4. Zhi-Long Chen & Hang Xu, 2006. "Dynamic Column Generation for Dynamic Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 40(1), pages 74-88, February.
    5. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    6. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    7. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    8. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    4. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    5. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.
    6. van Lon, Rinde R.S. & Ferrante, Eliseo & Turgut, Ali E. & Wenseleers, Tom & Vanden Berghe, Greet & Holvoet, Tom, 2016. "Measures of dynamism and urgency in logistics," European Journal of Operational Research, Elsevier, vol. 253(3), pages 614-624.
    7. Li, Jing-Quan & Mirchandani, Pitu B. & Borenstein, Denis, 2009. "Real-time vehicle rerouting problems with time windows," European Journal of Operational Research, Elsevier, vol. 194(3), pages 711-727, May.
    8. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    9. Diego Muñoz-Carpintero & Doris Sáez & Cristián E. Cortés & Alfredo Núñez, 2015. "A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach," Transportation Science, INFORMS, vol. 49(2), pages 239-253, May.
    10. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    11. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    12. Cristián E. Cortés & Doris Sáez & Alfredo Núñez & Diego Muñoz-Carpintero, 2009. "Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 43(1), pages 27-42, February.
    13. Dimitris Bertsimas & Patrick Jaillet, & Sébastien Martin, 2019. "Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications," Operations Research, INFORMS, vol. 67(1), pages 143-162, January.
    14. Daqing Wu & Rong Yan & Hongtao Jin & Fengmao Cai, 2023. "An Adaptive Nutcracker Optimization Approach for Distribution of Fresh Agricultural Products with Dynamic Demands," Agriculture, MDPI, vol. 13(7), pages 1-21, July.
    15. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    16. Sheng Liu & Long He & Zuo-Jun Max Shen, 2021. "On-Time Last-Mile Delivery: Order Assignment with Travel-Time Predictors," Management Science, INFORMS, vol. 67(7), pages 4095-4119, July.
    17. S. F. Ghannadpour & S. Noori & R. Tavakkoli-Moghaddam, 2014. "A multi-objective vehicle routing and scheduling problem with uncertainty in customers’ request and priority," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 414-446, August.
    18. Cheung, Bernard K.-S. & Choy, K.L. & Li, Chung-Lun & Shi, Wenzhong & Tang, Jian, 2008. "Dynamic routing model and solution methods for fleet management with mobile technologies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 694-705, June.
    19. Xiaoyun Jiang & Xiangxin Liu & Fubin Pan & Zinuo Han, 2024. "Optimizing Cold Chain Distribution Routes Considering Dynamic Demand: A Low-Emission Perspective," Sustainability, MDPI, vol. 16(5), pages 1-17, February.
    20. Ghiani, Gianpaolo & Guerriero, Francesca & Laporte, Gilbert & Musmanno, Roberto, 2003. "Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies," European Journal of Operational Research, Elsevier, vol. 151(1), pages 1-11, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4376-:d:1084378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.