IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i1d10.1007_s11069-016-2426-6.html
   My bibliography  Save this article

On the relation of vegetation and southwest monsoon rainfall over Western Ghats, India

Author

Listed:
  • T. V. Lakshmi Kumar

    (SRM University)

  • Koteswara Rao

    (Civil Aviation Authority of Qatar)

  • R. Uma

    (SRM University)

  • Humberto Barbosa

    (Laboratório de Análise e Processamento de Imagens de Satélites-LAPIS, Instituto de Ciências Atmosféricas-ICAT, Universidade Federal de Alagoas, UFAL)

  • K. V. K. R. K. Patnaik

    (Indian Maritime University)

  • Emily Prabha Jothi

    (Karnataka State Natural Disaster Monitoring Centre)

Abstract

This article presents the tendency of the normalized difference vegetation index (NDVI) and the dependence of vegetation on the rainfall and number of rainy and non-rainy days over Western Ghats. The study makes use of MODIS Terra NDVI data with 8-day intervals and 250-m resolution from 2000 to 2010 during the southwest monsoon (June to September) season. The results show an increasing tendency of the NDVI over different test sites in Western Ghats. The relation of the NDVI with the Antecedent Precipitation Index obtained from rainfall showed good agreement, and the relation of rainfall and the NDVI was mainly dependent on the available soil moisture levels and elevations of the test sites. Correlations were significant and positive with the number of rainy days and negative with the number of non-rainy days with a nearly 2-month lag.

Suggested Citation

  • T. V. Lakshmi Kumar & Koteswara Rao & R. Uma & Humberto Barbosa & K. V. K. R. K. Patnaik & Emily Prabha Jothi, 2016. "On the relation of vegetation and southwest monsoon rainfall over Western Ghats, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 425-436, October.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-016-2426-6
    DOI: 10.1007/s11069-016-2426-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2426-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2426-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjay Jain & Ravish Keshri & Ajanta Goswami & Archana Sarkar, 2010. "Application of meteorological and vegetation indices for evaluation of drought impact: a case study for Rajasthan, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 643-656, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. V. Lakshmi Kumar & Humberto Barbosa & S. Madhu & K. Koteswara Rao, 2019. "Studies on Crop Yields and Their Extreme Value Analysis over India," Sustainability, MDPI, vol. 11(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    2. Lu Liu & Yang Hong & Christopher Bednarczyk & Bin Yong & Mark Shafer & Rachel Riley & James Hocker, 2012. "Hydro-Climatological Drought Analyses and Projections Using Meteorological and Hydrological Drought Indices: A Case Study in Blue River Basin, Oklahoma," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2761-2779, August.
    3. Mohamed Mouafik & Abdelghani Chakhchar & Mounir Fouad & Ahmed El Aboudi, 2024. "Remote Sensing Technologies for Monitoring Argane Forest Stands: A Comprehensive Review," Geographies, MDPI, vol. 4(3), pages 1-21, July.
    4. Leisenheimer, Leonie & Wellmann, Thilo & Jänicke, Clemens & Haase, Dagmar, 2024. "Monitoring drought impacts on street trees using remote sensing - Disentangling temporal and species-specific response patterns with Sentinel-2 imagery," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 82, pages 1-14.
    5. Iman Khosravi & Yaser Jouybari-Moghaddam & Mohammad Reza Sarajian, 2017. "The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1507-1522, July.
    6. Mehmet Dikici, 2022. "Drought Analysis for the Seyhan Basin with Vegetation Indices and Comparison with Meteorological Different Indices," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    7. Omvir Singh & Divya Saini & Pankaj Bhardwaj, 2021. "Characterization of meteorological drought over a dryland ecosystem in north western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 785-826, October.
    8. Watinee Thavorntam & Netnapid Tantemsapya & Leisa Armstrong, 2015. "A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in Northeast Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1453-1474, July.
    9. Omidreza Mikaili & Majid Rahimzadegan, 2022. "Investigating remote sensing indices to monitor drought impacts on a local scale (case study: Fars province, Iran)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2511-2529, April.
    10. German Santacruz-De León & Janete Moran-Ramírez & José Alfredo Ramos-Leal, 2022. "Impact of Drought and Groundwater Quality on Agriculture in a Semi-Arid Zone of Mexico," Agriculture, MDPI, vol. 12(9), pages 1-18, September.
    11. V. K. Prajapati & M. Khanna & M. Singh & R. Kaur & R. N. Sahoo & D. K. Singh, 2021. "Evaluation of time scale of meteorological, hydrological and agricultural drought indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 89-109, October.
    12. R. Sahoo & Dipanwita Dutta & M. Khanna & N. Kumar & S. Bandyopadhyay, 2015. "Drought assessment in the Dhar and Mewat Districts of India using meteorological, hydrological and remote-sensing derived indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 733-751, June.
    13. Dimitrios Myronidis & Dimitrios Stathis & Konstantinos Ioannou & Dimitrios Fotakis, 2012. "An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4587-4605, December.
    14. N. Patel & Kamana Yadav, 2015. "Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 663-677, June.
    15. Manish Kumar Goyal & Ashutosh Sharma, 2016. "A fuzzy c-means approach regionalization for analysis of meteorological drought homogeneous regions in western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1831-1847, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-016-2426-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.