IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3673-d775939.html
   My bibliography  Save this article

The Influence of a New Food Waste Bio-Oil (FWBO) Rejuvenating Agent on Cracking Susceptibility of Aged Binder and RAP

Author

Listed:
  • Ahmed Abdalla

    (Department of Civil and Environmental Engineering, College of Engineering Temple University, 1947 N 12th St, Philadelphia, PA 19122, USA)

  • Ahmed Faheem

    (Department of Civil and Environmental Engineering, College of Engineering Temple University, 1947 N 12th St, Philadelphia, PA 19122, USA)

  • Berk Ayranci

    (Department of Civil and Environmental Engineering, College of Engineering Temple University, 1947 N 12th St, Philadelphia, PA 19122, USA)

Abstract

This research aims to deliver a new promising asphalt binder rejuvenator developed from food waste to mitigate the effects of aging on the asphalt. The research relied on three different binders: two unmodified PG 64–22 binders and a Polymer Modified (PMA) PG 76–22 binder. Moreover, a field-extracted RAP binder is utilized in evaluating the rejuvenator’s efficiency. For this study, the proposed food waste bio-oil (FWBO) is compared against two market-available rejuvenators. The experimental program relied on aging control binder samples for each asphalt type with no rejuvenation using the Rolling Thin Film Oven (RTFO) test, followed by the Pressure Aging Vessel (PAV) test for 20 hours to create an Artificial RAP (ARAP) binder. Then, ARAP and RAP binders were blended with 5% by their weight with one of the two on-market rejuvenators (#1, #2) or the proposed FWBO rejuvenator. Testing results reveal that low-temperature relaxation was significantly improved for all the investigated samples after an additional PAV aging cycle, as Delta Tc values increased compared to the control binders. Further, samples’ master curves were used to calculate the Glover–Rowe (G-R) parameter, crossover frequency, and modulus (ω c , G c *). The results clearly showed the ability of the FWBO to reduce the aging rate and improve the rheological properties of RAP binders. Further, the Fourier Transform Infrared Spectroscopy (FTIR) test showed that the new FWBO rejuvenator reduces the oxidation levels of the aged RAP binders, as suggested by the carbonyl index.

Suggested Citation

  • Ahmed Abdalla & Ahmed Faheem & Berk Ayranci, 2022. "The Influence of a New Food Waste Bio-Oil (FWBO) Rejuvenating Agent on Cracking Susceptibility of Aged Binder and RAP," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3673-:d:775939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aurangzeb, Qazi & Al-Qadi, Imad L. & Ozer, Hasan & Yang, Rebekah, 2014. "Hybrid life cycle assessment for asphalt mixtures with high RAP content," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 77-86.
    2. Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.
    3. Zaumanis, Martins & Mallick, Rajib B. & Frank, Robert, 2014. "100% recycled hot mix asphalt: A review and analysis," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 230-245.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    2. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    3. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    4. Fernanda Pereira Martins & Fabio Avila Rodrigues & Marcio Jose Silva, 2018. "Fe 2 (SO 4 ) 3 -Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives," Energies, MDPI, vol. 11(5), pages 1-11, May.
    5. Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
    6. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    7. Sahoo, Abhisek & Kumar, Sachin & Mohanty, Kaustubha, 2021. "Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer," Renewable Energy, Elsevier, vol. 165(P1), pages 261-277.
    8. Ghulam Mujtaba & Rifat Hayat & Qaiser Hussain & Mukhtar Ahmed, 2021. "Physio-Chemical Characterization of Biochar, Compost and Co-Composted Biochar Derived from Green Waste," Sustainability, MDPI, vol. 13(9), pages 1-22, April.
    9. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    10. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    11. Gang Li & Yuguang Zhou & Fang Ji & Ying Liu & Benu Adhikari & Li Tian & Zonghu Ma & Renjie Dong, 2013. "Yield and Characteristics of Pyrolysis Products Obtained from Schizochytrium limacinum under Different Temperature Regimes," Energies, MDPI, vol. 6(7), pages 1-14, July.
    12. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    13. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    14. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    15. Sánchez, M. & Clifford, B. & Nixon, J.D., 2018. "Modelling and evaluating a solar pyrolysis system," Renewable Energy, Elsevier, vol. 116(PA), pages 630-638.
    16. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    17. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    18. Qi, Jianhui & Li, Hui & Han, Kuihua & Zuo, Qi & Gao, Jie & Wang, Qian & Lu, Chunmei, 2016. "Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass," Energy, Elsevier, vol. 102(C), pages 244-251.
    19. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    20. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3673-:d:775939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.