IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3597-d774485.html
   My bibliography  Save this article

Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review

Author

Listed:
  • Marcus Evandro Teixeira Souza Junior

    (Faculty of Electrical Engineering, Federal University of Uberlandia, Uberlândia 38400-902, Brazil)

  • Luiz Carlos Gomes Freitas

    (Faculty of Electrical Engineering, Federal University of Uberlandia, Uberlândia 38400-902, Brazil)

Abstract

This work presents and discusses the application of power electronics for the integration of several distributed generation sources, as well as those related to it, the microgrids and the smart grids, to the power sector. Trends and challenges are addressed for the area of study and an embracing overview of the main technologies and techniques is presented for future investigation. As there are many power electronics devices available for employment, in each one of these crucial, modern, sustainable electrical systems, it is important for students, researchers and professionals to understand and compare the state of the art of them all, for the right choice in their respective uses. These apparatuses not only allow grid matching, but also provide new functions that enhance these artifacts’ operations, and of the entire power system. Thus, in this paper, the relationship between power electronics and distributed generation is detailed, with the role and classification of each static converter for the improved operation of wind power, photovoltaic systems, fuel cells, small hydro and microturbines exposed. While the first two are more widely covered in the literature, the last three are rarely discussed and differentiated, in terms of their power electronics interfaces. Then, the same is made for microgrids and smart grids, also scarcely approached in other works, with regard to the characteristics of the power converters applied, confirming their superior performances with the use of power electronics. Finally, conclusions are given.

Suggested Citation

  • Marcus Evandro Teixeira Souza Junior & Luiz Carlos Gomes Freitas, 2022. "Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3597-:d:774485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eltamaly, Ali M., 2021. "A novel musical chairs algorithm applied for MPPT of PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Jong-Chan Kim & Jun-Ho Huh & Jae-Sub Ko, 2020. "Optimization Design and Test Bed of Fuzzy Control Rule Base for PV System MPPT in Micro Grid," Sustainability, MDPI, vol. 12(9), pages 1-25, May.
    3. Fahad R. Albogamy & Sajjad Ali Khan & Ghulam Hafeez & Sadia Murawwat & Sheraz Khan & Syed Irtaza Haider & Abdul Basit & Klaus-Dieter Thoben, 2022. "Real-Time Energy Management and Load Scheduling with Renewable Energy Integration in Smart Grid," Sustainability, MDPI, vol. 14(3), pages 1-28, February.
    4. Karellas, S. & Karl, J. & Kakaras, E., 2008. "An innovative biomass gasification process and its coupling with microturbine and fuel cell systems," Energy, Elsevier, vol. 33(2), pages 284-291.
    5. Raja Singh, R. & Raj Chelliah, Thanga & Agarwal, Pramod, 2014. "Power electronics in hydro electric energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 944-959.
    6. Islam, M.R. & Mekhilef, S. & Saidur, R., 2013. "Progress and recent trends of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 456-468.
    7. Kirubakaran, A. & Jain, Shailendra & Nema, R.K., 2009. "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2430-2440, December.
    8. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    9. Reza Reisi, Ali & Hassan Moradi, Mohammad & Jamasb, Shahriar, 2013. "Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 433-443.
    10. Ishaque, Kashif & Salam, Zainal, 2013. "A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 475-488.
    11. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    12. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    13. Nascimento, Marco A.R. & Lora, Electo S. & Corrêa, Paulo S.P. & Andrade, Rubenildo V. & Rendon, Manuel A. & Venturini, Osvaldo J. & Ramirez, Guido A.S., 2008. "Biodiesel fuel in diesel micro-turbine engines: Modelling and experimental evaluation," Energy, Elsevier, vol. 33(2), pages 233-240.
    14. Eltawil, Mohamed A. & Zhao, Zhengming, 2013. "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 793-813.
    15. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    16. Ali M. Eltamaly, 2021. "A Novel Strategy for Optimal PSO Control Parameters Determination for PV Energy Systems," Sustainability, MDPI, vol. 13(2), pages 1-28, January.
    17. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    18. Makbul A.M. Ramli & H.R.E.H. Bouchekara & Abdulsalam S. Alghamdi, 2019. "Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources," Sustainability, MDPI, vol. 11(14), pages 1-28, July.
    19. Chaubey, Rashmi & Sahu, Satanand & James, Olusola O. & Maity, Sudip, 2013. "A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 443-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed O. Badr & Abdulsalam A. Aloukili & Metwally A. El-Sharkawy & Mariam A. Sameh & Mahmoud A. Attia, 2022. "Compensation of Distributed Generations Outage Using Controlled Switched Capacitors," Sustainability, MDPI, vol. 14(23), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    2. Bhatti, Abdul Rauf & Salam, Zainal & Aziz, Mohd Junaidi Bin Abdul & Yee, Kong Pui & Ashique, Ratil H., 2016. "Electric vehicles charging using photovoltaic: Status and technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 34-47.
    3. Bizon, Nicu & Thounthong, Phatiphat, 2018. "Real-time strategies to optimize the fueling of the fuel cell hybrid power source: A review of issues, challenges and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1089-1102.
    4. Joshi, Puneet & Arora, Sudha, 2017. "Maximum power point tracking methodologies for solar PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1154-1177.
    5. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    6. Bizon, Nicu, 2016. "Global Maximum Power Point Tracking (GMPPT) of Photovoltaic array using the Extremum Seeking Control (ESC): A review and a new GMPPT ESC scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 524-539.
    7. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    8. Liu, Yi-Hua & Chen, Jing-Hsiao & Huang, Jia-Wei, 2015. "A review of maximum power point tracking techniques for use in partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 436-453.
    9. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    10. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    11. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    12. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    13. Muhannad Alaraj & Astitva Kumar & Ibrahim Alsaidan & Mohammad Rizwan & Majid Jamil, 2022. "An Advanced and Robust Approach to Maximize Solar Photovoltaic Power Production," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    14. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    15. Kebir, Anouer & Woodward, Lyne & Akhrif, Ouassima, 2019. "Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control," Renewable Energy, Elsevier, vol. 134(C), pages 914-926.
    16. Harrou, Fouzi & Sun, Ying & Taghezouit, Bilal & Saidi, Ahmed & Hamlati, Mohamed-Elkarim, 2018. "Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches," Renewable Energy, Elsevier, vol. 116(PA), pages 22-37.
    17. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    18. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Gao, Xian-Zhong & Hou, Zhong-Xi & Guo, Zheng & Chen, Xiao-Qian, 2015. "Reviews of methods to extract and store energy for solar-powered aircraft," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 96-108.
    20. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3597-:d:774485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.