IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1019-d1140601.html
   My bibliography  Save this article

Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China

Author

Listed:
  • Dongwei Liu

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Qingyuan Forest CERN, National Observation and Research Station, Shenyang 110016, China
    Key Laboratory of Isotope Techniques and Applications, Shenyang 110016, China
    Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shenyang 110016, China)

  • Shanlong Li

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Qingyuan Forest CERN, National Observation and Research Station, Shenyang 110016, China
    Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, Changchun 130033, China)

  • Weixing Zhu

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Department of Biological Sciences, Binghamton University—State University of New York, Binghamton, NY 13902, USA)

  • Yongyang Wang

    (Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China)

  • Shasha Zhang

    (Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria)

  • Yunting Fang

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    Qingyuan Forest CERN, National Observation and Research Station, Shenyang 110016, China
    Key Laboratory of Isotope Techniques and Applications, Shenyang 110016, China)

Abstract

Forests worldwide store large quantities of carbon (C), particularly in soils as soil organic C (SOC). In northeastern China, two dominant forest types, secondary mixed forest (MF) and larch plantation forest (LF), cover extensive areas. However, we lack an understanding of the patterns and the mechanisms of SOC storage and stabilization in MF and LF, especially in deep soil layers. This research aims to illustrate the vertical distribution and mineral protection of SOC over soil depth; we also used δ 13 C values of soil fractions to evaluate SOC stability. Samples from the surface litter (O i ), organic layer (O a+e ), and 0–40 cm mineral soils were collected from both MF and LF plots. We used two different methods to separate bulk soils into distinguished fractions: (1) macro- and micro-aggregates and the non-aggregated fraction, and (2) particulate organic matter (POM) and mineral-associated organic matter (MAOM). The C concentrations, C stocks, and δ 13 C of all soil fractions were determined. Our findings were as follows: (1) SOC was mainly stored in mineral soils and was 13.6% lower in LF (8609 ± 1180 g C m −2 ) than MF (9969 ± 2084 g C m −2 ). (2) In both MF and LF, the SOC stock was mainly stored in aggregates (averaged 92.7%); macroaggregates dominated in the surface layers (O a+e layer and 0–10 cm) but microaggregates dominated in the deep layers (10–20 cm and 20–40 cm). In mineral soils, MAOM was the dominant fraction of the C stock (averaged 81.6%). (3) The proportion of C distributed in microaggregates and MAOM increased from O a+e to the 20–40 cm layer. (4) The C/N ratios and δ 13 C values of MAOM were smaller and heavier compared to those of POM. Our study demonstrated that in both forests, aggregate formation and mineral association predominantly contributed to SOC storage, and large stocks of SOC were distributed in the deep soil. The increasing proportion of SOC in microaggregates and MAOM along the soil depth, most likely derived from microbial turnover and microbial necromass, influenced SOC stability in both forest types.

Suggested Citation

  • Dongwei Liu & Shanlong Li & Weixing Zhu & Yongyang Wang & Shasha Zhang & Yunting Fang, 2023. "Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China," Land, MDPI, vol. 12(5), pages 1-14, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1019-:d:1140601
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 586(7831), pages 720-723, October.
    2. Michael W. I. Schmidt & Margaret S. Torn & Samuel Abiven & Thorsten Dittmar & Georg Guggenberger & Ivan A. Janssens & Markus Kleber & Ingrid Kögel-Knabner & Johannes Lehmann & David A. C. Manning & Pa, 2011. "Persistence of soil organic matter as an ecosystem property," Nature, Nature, vol. 478(7367), pages 49-56, October.
    3. Colin Averill & Benjamin L. Turner & Adrien C. Finzi, 2014. "Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage," Nature, Nature, vol. 505(7484), pages 543-545, January.
    4. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    5. Jing Wang & Liang Feng & Paul I. Palmer & Yi Liu & Shuangxi Fang & Hartmut Bösch & Christopher W. O’Dell & Xiaoping Tang & Dongxu Yang & Lixin Liu & ChaoZong Xia, 2020. "Publisher Correction: Large Chinese land carbon sink estimated from atmospheric carbon dioxide data," Nature, Nature, vol. 588(7837), pages 19-19, December.
    6. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Quanxu Hu & Jinhe Zhang & Huaju Xue & Jingwei Wang & Aiqing Li, 2024. "Spatiotemporal Variations in Carbon Sources and Sinks in National Park Ecosystem and the Impact of Tourism," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    3. Zhencheng Xing & Yanyan Ma & Lan Luo & Haikun Wang, 2024. "Harmonizing economies and ecologies: Towards an equitable provincial carbon quota allocation for China’s peak emissions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    4. Shenghang Wang & Shen Tan & Jiaming Xu, 2023. "Evaluation and Implication of the Policies towards China’s Carbon Neutrality," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    5. Zhen Yu & Philippe Ciais & Shilong Piao & Richard A. Houghton & Chaoqun Lu & Hanqin Tian & Evgenios Agathokleous & Giri Raj Kattel & Stephen Sitch & Daniel Goll & Xu Yue & Anthony Walker & Pierre Frie, 2022. "Forest expansion dominates China’s land carbon sink since 1980," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Chaochao Du & Xiaoyong Bai & Yangbing Li & Qiu Tan & Cuiwei Zhao & Guangjie Luo & Luhua Wu & Fei Chen & Chaojun Li & Chen Ran & Xuling Luo & Huipeng Xi & Huan Chen & Sirui Zhang & Min Liu & Suhua Gong, 2022. "Inventory of China’s Net Biome Productivity since the 21st Century," Land, MDPI, vol. 11(8), pages 1-16, August.
    7. Wenguang Chen & Yafeng Lu & He Yin & Xiaokang Zhou & Zhengyang Li & Yanguo Liu, 2024. "A Typical Small Watershed in Southwestern China Is Demonstrated as a Significant Carbon Sink," Land, MDPI, vol. 13(4), pages 1-21, April.
    8. Jie Huang & Zimin Sun & Pengshu Zhong, 2022. "The Spatial Disequilibrium and Dynamic Evolution of the Net Agriculture Carbon Effect in China," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    9. Shiliang Liu & Yuhong Dong & Hua Liu & Fangfang Wang & Lu Yu, 2023. "Review of Valuation of Forest Ecosystem Services and Realization Approaches in China," Land, MDPI, vol. 12(5), pages 1-16, May.
    10. Liu, Shilei & Xia, Jun, 2021. "Forest harvesting restriction and forest restoration in China," Forest Policy and Economics, Elsevier, vol. 129(C).
    11. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    12. Bishan Wu, 2024. "Low-carbon development mechanism of energy industry from the perspective of carbon neutralization," Energy & Environment, , vol. 35(2), pages 628-643, March.
    13. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Zhang, Qian & Cheng, Baodong & Diao, Gang & Tao, Chenlu & Wang, Can, 2023. "Does China's natural forest logging ban affect the stability of the timber import trade network?," Forest Policy and Economics, Elsevier, vol. 152(C).
    15. Wang, Lin & Zhao, Junsan & Lin, Yilin & Chen, Guoping, 2024. "Exploring ecological carbon sequestration advantage and economic responses in an ecological security pattern: A nature-based solutions perspective," Ecological Modelling, Elsevier, vol. 488(C).
    16. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    19. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    20. Ogwu Stephen Obinozie & Eze Afamefuna A. & Uzoigwe Joshua C. & Orji Anthony & Maduka Anne Chinonye & Onwe Joshua Chukwuma, 2023. "Global Warming and Atmospheric Carbon: Is Carbon Sequestration a Myth or Reality?," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 28-56, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1019-:d:1140601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.