IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2588-d756885.html
   My bibliography  Save this article

Calculation and Expression of the Urban Heat Island Indices Based on GeoSOT Grid

Author

Listed:
  • Jie Jiang

    (School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Yandi Zhou

    (School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Xian Guo

    (School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)

  • Tengteng Qu

    (College of Engineering, Peking University, Beijing 100871, China)

Abstract

The urban heat island (UHI) effect accelerates the accumulation of atmospheric pollutants, which has a strong impact on the climate of cities, circulation of material, and health of citizens. Therefore, it is of great significance to conduct quantitative monitoring and accurate governance of UHI by calculating the index rapidly and expressing spatial distribution accurately. In this paper, we proposed a model that integrates UHI information with the GeoSOT (Geographic Coordinate Subdividing Grid with One-Dimension Integer Coding on 2n Tree) grid and subsequently designed the calculation method of UHI indices and expression method of UHI spatial distribution. The UHI indices were calculated on Dongcheng and Xicheng District, Beijing, in the Summer of 2014 to 2019. Experimental results showed that the proposed method has higher calculation efficiency, and achieved a more detailed description of the spatial distribution of the urban thermal environment compared with the Gaussian surface fitting method. This method can be used for large-scale and high-frequency monitoring the level of UHI and expressing complicated spatial distribution of UHI inside the city, thus supporting accurate governance of UHI.

Suggested Citation

  • Jie Jiang & Yandi Zhou & Xian Guo & Tengteng Qu, 2022. "Calculation and Expression of the Urban Heat Island Indices Based on GeoSOT Grid," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2588-:d:756885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Sun & Xuebin Zhang & Guoyu Ren & Francis W. Zwiers & Ting Hu, 2016. "Contribution of urbanization to warming in China," Nature Climate Change, Nature, vol. 6(7), pages 706-709, July.
    2. Yaoping Cui & Xinliang Xu & Jinwei Dong & Yaochen Qin, 2016. "Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases," Sustainability, MDPI, vol. 8(8), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biao Liu & Xian Guo & Jie Jiang, 2023. "How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    3. Jiale Tang & Xincan Lan & Yuanyuan Lian & Fang Zhao & Tianqi Li, 2022. "Estimation of Urban–Rural Land Surface Temperature Difference at Different Elevations in the Qinling–Daba Mountains Using MODIS and the Random Forest Model," IJERPH, MDPI, vol. 19(18), pages 1-12, September.
    4. Zeng, Lijun & Zhao, Yue & Wang, Xilian, 2022. "How to develop the new urbanization in mineral resources abundant regions in China? A VIKOR-based path matching model," Resources Policy, Elsevier, vol. 79(C).
    5. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Hongyu Du & Fengqi Zhou & Chunlan Li & Wenbo Cai & Hong Jiang & Yongli Cai, 2020. "Analysis of the Impact of Land Use on Spatiotemporal Patterns of Surface Urban Heat Island in Rapid Urbanization, a Case Study of Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    7. Alberto Vesperoni & Paul Schweinzer, 2023. "A threshold model of urban development," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 891-924, September.
    8. Batara Surya & Syafri Syafri & Hernita Sahban & Harry Hardian Sakti, 2020. "Natural Resource Conservation Based on Community Economic Empowerment: Perspectives on Watershed Management and Slum Settlements in Makassar City, South Sulawesi, Indonesia," Land, MDPI, vol. 9(4), pages 1-31, March.
    9. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    10. Feiyu Wang & Keqin Duan & Lei Zou, 2019. "Urbanization Effects on Human-Perceived Temperature Changes in the North China Plain," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
    11. Yawei Yang & Lei Li & Pak-Wai Chan & Qianjin Zhou & Bosi Sheng, 2022. "Intercomparison of Local Warming Trends of Shanghai and Hong Kong Based on 120-Year Temperature Observational Data," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    12. Chu Li & Jinming Yan & Ze Xu, 2021. "How Does New-Type Urbanization Affect the Subjective Well-Being of Urban and Rural Residents? Evidence from 28 Provinces of China," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    13. Na Zhao & Mingxing Chen, 2021. "A Comprehensive Study of Spatiotemporal Variations in Temperature Extremes across China during 1960–2018," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    14. Wen Xu & Lushuang Zhao & Yunwei Zhang & Zhaolin Gu, 2023. "Investigation on Air Ventilation within Idealised Urban Wind Corridors and the Influence of Structural Factors with Numerical Simulations," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    15. Kim, Hyungkyoo & Jung, Yoonhee & Oh, Jae In, 2019. "Transformation of urban heat island in the three-center city of Seoul, South Korea: The role of master plans," Land Use Policy, Elsevier, vol. 86(C), pages 328-338.
    16. Chen Yang & Qingming Zhan & Sihang Gao & Huimin Liu, 2019. "How Do the Multi-Temporal Centroid Trajectories of Urban Heat Island Correspond to Impervious Surface Changes: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 16(20), pages 1-21, October.
    17. Chenchen Ren & Guoyu Ren & Panfeng Zhang & Suonam Kealdrup Tysa & Yun Qin, 2021. "Urbanization Significantly Affects Pan-Evaporation Trends in Large River Basins of China Mainland," Land, MDPI, vol. 10(4), pages 1-11, April.
    18. Chaobin Yang & Xingyuan He & Fengqin Yan & Lingxue Yu & Kun Bu & Jiuchun Yang & Liping Chang & Shuwen Zhang, 2017. "Mapping the Influence of Land Use/Land Cover Changes on the Urban Heat Island Effect—A Case Study of Changchun, China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    19. Sylvain Zeghni & Nathalie Fabry, 2023. "Nachhaltige Information und die Dekarbonisierungsstrategie der europäischen Städte [Sustainable information and decarbonization strategy for European cities]," Post-Print hal-04284996, HAL.
    20. Xiaoyong Li & Wenhui Kuang & Fengyun Sun, 2020. "Identifying Urban Flood Regulation Priority Areas in Beijing Based on an Ecosystem Services Approach," Sustainability, MDPI, vol. 12(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2588-:d:756885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.