IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2421-d753923.html
   My bibliography  Save this article

A Comparative LCA of Aeroponic, Hydroponic, and Soil Cultivations of Bioactive Substance Producing Plants

Author

Listed:
  • Lenka Wimmerova

    (Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague, Czech Republic)

  • Zdenek Keken

    (Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague, Czech Republic)

  • Olga Solcova

    (Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the CAS, Rozvojova 1/135, CZ-165 02 Prague, Czech Republic)

  • Lubomir Bartos

    (Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, CZ-165 00 Prague, Czech Republic)

  • Marketa Spacilova

    (Department of Catalysis and Reaction Engineering, Institute of Chemical Process Fundamentals of the CAS, Rozvojova 1/135, CZ-165 02 Prague, Czech Republic)

Abstract

Sustainable agriculture is currently trendy. It is supported not only for the urban environment but also as an innovation of conventional practices in order to increase the efficiency and quality of agricultural production. This study presents the results achieved within selected soil-less (hydroponic and aeroponic) systems. Then, it compares them, using the tool of comparative life cycle assessment (LCA), with the results of soil cultivation. The attention is directed towards biomass production and the content of bioactive substances, which can compensate for higher operating costs of soil-less cultivation systems. Coffea arabica has shown a significant increase of caffeine and theobromine contents, both in leaves and roots, as well as higher biomass yield during the aeroponic cultivation. On the contrary, Senecio bicolor evinced the results of a considerably increased growth in the hydroponic system, with no higher contents of alkaloid or flavonoids, except for the rutin concentration. The LCA results of the compared soil and soil-less systems showed that the consumption of fertilizers, diesel, and water in soil systems and of conventional electricity in aeroponics and hydroponics contributed mostly to their environmental burden. The major environmental impact categories are terrestrial ecotoxicity, human non-carcinogenic toxicity, and global warming. Therefore, in order to make the soil-less cultivation systems sustainable, these environmental aspects need to be considered deeply.

Suggested Citation

  • Lenka Wimmerova & Zdenek Keken & Olga Solcova & Lubomir Bartos & Marketa Spacilova, 2022. "A Comparative LCA of Aeroponic, Hydroponic, and Soil Cultivations of Bioactive Substance Producing Plants," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2421-:d:753923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monica Dutta & Deepali Gupta & Yasir Javed & Khalid Mohiuddin & Sapna Juneja & Zafar Iqbal Khan & Ali Nauman, 2023. "Monitoring Root and Shoot Characteristics for the Sustainable Growth of Barley Using an IoT-Enabled Hydroponic System and AquaCrop Simulator," Sustainability, MDPI, vol. 15(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    2. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    3. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    4. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    5. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.
    6. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    7. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Libutti, Angela, 2018. "Agricultural “greening” and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy)," Land Use Policy, Elsevier, vol. 70(C), pages 591-600.
    8. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    9. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    10. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    11. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    12. Jozami, Emiliano & Mele, Fernando D & Piastrellini, Roxana & Civit, Bárbara M & Feldman, Susana R, 2022. "Life cycle assessment of bioenergy from lignocellulosic herbaceous biomass: The case study of Spartina argentinensis," Energy, Elsevier, vol. 254(PA).
    13. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    14. Guang Han & Robert A. Martin, 2018. "Teaching and Learning about Biomass Energy: The Significance of Biomass Education in Schools," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    15. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.
    16. Pio, D.T. & Tarelho, L.A.C., 2021. "Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    18. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    19. Natarianto Indrawan & Betty Simkins & Ajay Kumar & Raymond L. Huhnke, 2020. "Economics of Distributed Power Generation via Gasification of Biomass and Municipal Solid Waste," Energies, MDPI, vol. 13(14), pages 1-18, July.
    20. Vo, Long Hai & Le, Thai-Ha, 2021. "Eatery, energy, environment and economic system, 1970–2017: Understanding volatility spillover patterns in a global sample," Energy Economics, Elsevier, vol. 100(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2421-:d:753923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.