IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2098-d747969.html
   My bibliography  Save this article

Using Real Options Thinking to Value Investment Flexibility in Carbon Capture and Utilization Projects: A Review

Author

Listed:
  • Hanne Lamberts-Van Assche

    (Department of Engineering Management, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium)

  • Tine Compernolle

    (Department of Engineering Management, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
    Geological Survey of Belgium, Royal Belgian Institute of Natural Sciences, Jennerstraat 13, 1000 Brussels, Belgium)

Abstract

Carbon capture and utilization (CCU) is one of the key technologies that may help to reduce industrial emissions. However, the deployment of CCU is hampered by various barriers, including high levels of technical, policy and market uncertainty. The real options theory (ROT) provides a method to account for these uncertainties and introduce flexibility in the investment decision by allowing decisions to be changed in response to the evolution of uncertainties. ROT is already being applied frequently in the evaluation of renewable energy or carbon capture and storage (CCS) projects, e.g., addressing the uncertainty in the price of CO 2 . However, ROT has only found a few applications in the CCU literature to date. Therefore, this paper investigates the specific types of uncertainty that arise with the utilization of CO 2 , identifies the types of real options present in CCU projects and discusses the applied valuation techniques. Research gaps are identified in the CCU literature and recommendations are made to fill these gaps. The investment decision sequence for CCU projects is shown, together with the uncertainties and flexibility options in the CCU projects. This review can support the real options-based evaluations of the investment decisions in CCU projects to allow for flexibility and uncertainty.

Suggested Citation

  • Hanne Lamberts-Van Assche & Tine Compernolle, 2022. "Using Real Options Thinking to Value Investment Flexibility in Carbon Capture and Utilization Projects: A Review," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2098-:d:747969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    2. Wang, Juite & Yang, Chung-Yu, 2012. "Flexibility planning for managing R&D projects under risk," International Journal of Production Economics, Elsevier, vol. 135(2), pages 823-831.
    3. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
    4. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    7. Bruhn, Thomas & Naims, Henriette & Olfe-Kräutlein, Barbara, 2016. "Separating the debate on CO2 utilisation from carbon capture and storage," Environmental Science & Policy, Elsevier, vol. 60(C), pages 38-43.
    8. Fan, Jing-Li & Xu, Mao & Yang, Lin & Zhang, Xian & Li, Fengyu, 2019. "How can carbon capture utilization and storage be incentivized in China? A perspective based on the 45Q tax credit provisions," Energy Policy, Elsevier, vol. 132(C), pages 1229-1240.
    9. Zhang, Xian & Wang, Xingwei & Chen, Jiajun & Xie, Xi & Wang, Ke & Wei, Yiming, 2014. "A novel modeling based real option approach for CCS investment evaluation under multiple uncertainties," Applied Energy, Elsevier, vol. 113(C), pages 1059-1067.
    10. Martínez Ceseña, E.A. & Mutale, J. & Rivas-Dávalos, F., 2013. "Real options theory applied to electricity generation projects: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 573-581.
    11. Paul Enders & Alan Scheller-Wolf & Nicola Secomandi, 2010. "Interaction between technology and extraction scaling real options in natural gas production," IISE Transactions, Taylor & Francis Journals, vol. 42(9), pages 643-655.
    12. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    13. Wang, Juite & Hwang, W.-L., 2007. "A fuzzy set approach for R&D portfolio selection using a real options valuation model," Omega, Elsevier, vol. 35(3), pages 247-257, June.
    14. Yu, Hao & Wei, Yi-Ming & Tang, Bao-Jun & Mi, Zhifu & Pan, Su-Yan, 2016. "Assessment on the research trend of low-carbon energy technology investment: A bibliometric analysis," Applied Energy, Elsevier, vol. 184(C), pages 960-970.
    15. de Oliveira, Denis Luis & Brandao, Luiz E. & Igrejas, Rafael & Gomes, Leonardo Lima, 2014. "Switching outputs in a bioenergy cogeneration project: A real options approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 74-82.
    16. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    17. Yang, Lin & Xu, Mao & Yang, Yuantao & Fan, Jingli & Zhang, Xian, 2019. "Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: Evidence from China," Applied Energy, Elsevier, vol. 255(C).
    18. Compernolle, T. & Welkenhuysen, K. & Huisman, K. & Piessens, K. & Kort, P., 2017. "Off-shore enhanced oil recovery in the North Sea: The impact of price uncertainty on the investment decisions," Energy Policy, Elsevier, vol. 101(C), pages 123-137.
    19. Lei Zhu & Xing Yao & Xian Zhang, 2020. "Evaluation of cooperative mitigation: captured carbon dioxide for enhanced oil recovery," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1261-1285, October.
    20. Yao, Xing & Fan, Ying & Xu, Yuan & Zhang, Xian & Zhu, Lei & Feng, Lianyong, 2019. "Is it worth to invest? -An evaluation of CTL-CCS project in China based on real options," Energy, Elsevier, vol. 182(C), pages 920-931.
    21. Savolainen, Jyrki, 2016. "Real options in metal mining project valuation: Review of literature," Resources Policy, Elsevier, vol. 50(C), pages 49-65.
    22. Thomas Machiels & Tine Compernolle & Tom Coppens, 2021. "Real option applications in megaproject planning: trends, relevance and research gaps. A literature review," European Planning Studies, Taylor & Francis Journals, vol. 29(3), pages 446-467, March.
    23. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    24. Tom Coppens & Maarten Van Acker & Thomas Machiels & Tine Compernolle, 2021. "A real options framework for adaptive urban design," Journal of Urban Design, Taylor & Francis Journals, vol. 26(6), pages 681-698, November.
    25. Welkenhuysen, Kris & Rupert, Jort & Compernolle, Tine & Ramirez, Andrea & Swennen, Rudy & Piessens, Kris, 2017. "Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea," Applied Energy, Elsevier, vol. 185(P1), pages 745-761.
    26. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lamberts-Van Assche, Hanne & Lavrutich, Maria & Compernolle, Tine & Thomassen, Gwenny & Thijssen, Jacco J.J. & Kort, Peter M., 2023. "CO2 storage or utilization? A real options analysis under market and technological uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    2. Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).
    3. Aleksandr Babkin & Nadezhda Kvasha & Daniil Demidenko & Ekaterina Malevskaia-Malevich & Evgeny Voroshin, 2022. "Methodology for Economic Analysis of Highly Uncertain Innovative Projects of Improbability Type," Risks, MDPI, vol. 11(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    3. Thomas Aspinall & Adrian Gepp & Geoff Harris & Simone Kelly & Colette Southam & Bruce Vanstone, 2021. "Estimation of a term structure model of carbon prices through state space methods: The European Union emissions trading scheme," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(2), pages 3797-3819, June.
    4. Bo Sun & Jiajia Tao, 2024. "Investment Decisions of CCUS Projects in China Considering the Supply–Demand Relationship of CO 2 from the Industry Symbiosis Perspective," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    5. Chen, Siyuan & Zhang, Qi & Wang, Ge & Zhu, Lijing & Li, Yan, 2018. "Investment strategy for underground gas storage facilities based on real option model considering gas market reform in China," Energy Economics, Elsevier, vol. 70(C), pages 132-142.
    6. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    7. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    8. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    9. Ping Shi & Bo Yan & Jun Zhao, 2020. "Appropriate timing for SMEs to introduce an Internet-based online channel under uncertain operating costs: a real options analysis," Electronic Commerce Research, Springer, vol. 20(4), pages 969-999, December.
    10. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    11. Gorupec Natalia & Brehmer Nataliia & Tiberius Victor & Kraus Sascha, 2022. "Tackling uncertain future scenarios with real options: A review and research framework," The Irish Journal of Management, Sciendo, vol. 41(1), pages 69-88, July.
    12. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).
    13. Maeda, Mansaku & Watts, David, 2019. "The unnoticed impact of long-term cost information on wind farms’ economic value in the USA. – A real option analysis," Applied Energy, Elsevier, vol. 241(C), pages 540-547.
    14. Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).
    15. Ouyang, Yiling & Guo, Jian, 2022. "Carbon capture and storage investment strategy towards the dual carbon goals," Journal of Asian Economics, Elsevier, vol. 82(C).
    16. Zhang, Hanyu & Assereto, Martina & Byrne, Julie, 2023. "Deferring real options with solar renewable energy certificates," Global Finance Journal, Elsevier, vol. 55(C).
    17. ShahNazari, Mahdi & McHugh, Adam & Maybee, Bryan & Whale, Jonathan, 2014. "The effect of political cycles on power investment decisions: Expectations over the repeal and reinstatement of carbon policy mechanisms in Australia," Applied Energy, Elsevier, vol. 130(C), pages 157-165.
    18. Fan, Jing-Li & Xu, Mao & Yang, Lin & Zhang, Xian, 2019. "Benefit evaluation of investment in CCS retrofitting of coal-fired power plants and PV power plants in China based on real options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Liu, Feng & Lv, Tao & Meng, Yuan & Li, Cong & Hou, Xiaoran & Xu, Jie & Deng, Xu, 2023. "Potential analysis of BESS and CCUS in the context of China's carbon trading scheme toward the low-carbon electricity system," Renewable Energy, Elsevier, vol. 210(C), pages 462-471.
    20. Shahnazari, Mahdi & McHugh, Adam & Maybee, Bryan & Whale, Jonathan, 2014. "Evaluation of power investment decisions under uncertain carbon policy: A case study for converting coal fired steam turbine to combined cycle gas turbine plants in Australia," Applied Energy, Elsevier, vol. 118(C), pages 271-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2098-:d:747969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.