IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v36y2014icp74-82.html
   My bibliography  Save this article

Switching outputs in a bioenergy cogeneration project: A real options approach

Author

Listed:
  • de Oliveira, Denis Luis
  • Brandao, Luiz E.
  • Igrejas, Rafael
  • Gomes, Leonardo Lima

Abstract

Environmental concerns have stimulated the search for economically feasible renewable energy projects. One such alternative is the use of biomass for energy generation, which has increasingly been the focus of interest. Traditional valuation methods, on the other hand, fail to capture the value of the embedded options that exist in many of these projects, which may lead to non-optimal investment decisions. In this article we analyze the feasibility of installing a cogeneration unit in an industrial plant in Brazil in order to extract value from biomass residue currently discarded, which can be used for thermal and electric energy generation. The cogeneration unit also allows the firm the flexibility to optimally choose between an increase in production or the generation of surplus energy for sale in the short term market, once additional investment in interconnection to the grid is made. We model the uncertainty over future energy prices as a mean reverting process with jumps and seasonality and the embedded flexibility as a bundle of European options under the real options approach. The results indicate that the investment in the cogeneration plant is warranted and that the option to switch outputs adds significant value to the project, which suggests that biomass residue may be a sustainable energy alternative in this case.

Suggested Citation

  • de Oliveira, Denis Luis & Brandao, Luiz E. & Igrejas, Rafael & Gomes, Leonardo Lima, 2014. "Switching outputs in a bioenergy cogeneration project: A real options approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 74-82.
  • Handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:74-82
    DOI: 10.1016/j.rser.2014.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114002500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Venetsanos, Konstantinos & Angelopoulou, Penelope & Tsoutsos, Theocharis, 2002. "Renewable energy sources project appraisal under uncertainty: the case of wind energy exploitation within a changing energy market environment," Energy Policy, Elsevier, vol. 30(4), pages 293-307, March.
    2. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    3. Ben Hambly & Sam Howison & Tino Kluge, 2009. "Modelling spikes and pricing swing options in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 937-949.
    4. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Detert, Neal & Kotani, Koji, 2013. "Real options approach to renewable energy investments in Mongolia," Energy Policy, Elsevier, vol. 56(C), pages 136-150.
    7. Tolis, Athanasios I. & Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Time-dependent opportunities in energy business: A comparative study of locally available renewable and conventional fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 384-393, January.
    8. Wickart, Marcel & Madlener, Reinhard, 2007. "Optimal technology choice and investment timing: A stochastic model of industrial cogeneration vs. heat-only production," Energy Economics, Elsevier, vol. 29(4), pages 934-952, July.
    9. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    10. Yang, Ming & Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom, 2008. "Evaluating the power investment options with uncertainty in climate policy," Energy Economics, Elsevier, vol. 30(4), pages 1933-1950, July.
    11. Martínez-Ceseña, E.A. & Mutale, J., 2011. "Application of an advanced real options approach for renewable energy generation projects planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2087-2094, May.
    12. Luiz Eduardo T. Brandão & Gilberto Master Penedo & Carlos Bastian-Pinto, 2013. "The value of switching inputs in a biodiesel production plant," The European Journal of Finance, Taylor & Francis Journals, vol. 19(7-8), pages 674-688, September.
    13. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    14. Bastian-Pinto, Carlos & Brando, Luiz & Hahn, Warren J., 2009. "Flexibility as a source of value in the production of alternative fuels: The ethanol case," Energy Economics, Elsevier, vol. 31(3), pages 411-422, May.
    15. Laurikka, Harri, 2006. "Option value of gasification technology within an emissions trading scheme," Energy Policy, Elsevier, vol. 34(18), pages 3916-3928, December.
    16. Higgs, Helen & Worthington, Andrew, 2008. "Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market," Energy Economics, Elsevier, vol. 30(6), pages 3172-3185, November.
    17. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    18. Blyth, William & Bradley, Richard & Bunn, Derek & Clarke, Charlie & Wilson, Tom & Yang, Ming, 2007. "Investment risks under uncertain climate change policy," Energy Policy, Elsevier, vol. 35(11), pages 5766-5773, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das Gupta, Supratim, 2021. "Using real options to value capacity additions and investment expenditures in renewable energies in India," Energy Policy, Elsevier, vol. 148(PA).
    2. Glensk, Barbara & Madlener, Reinhard, 2017. "Evaluating the Enhanced Flexibility of Lignite-Fired Power Plants: A Real Options Analysis," FCN Working Papers 107/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Kostrova, Alisa & Britz, Wolfgang & Finger, Robert & Djanibekov, Utkur, 2016. "Real Options Approach And Stochastic Programming In Farm Level Analysis: The Case Of Short-Rotation Coppice Cultivation," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244864, German Association of Agricultural Economists (GEWISOLA).
    4. Hu, Junfei & Chen, Huanyue & Zhou, Peng & Guo, Peng, 2022. "Optimal subsidy level for waste-to-energy investment considering flexibility and uncertainty," Energy Economics, Elsevier, vol. 108(C).
    5. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    6. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    7. Bastian-Pinto, Carlos L. & Araujo, Felipe V. de S. & Brandão, Luiz E. & Gomes, Leonardo L., 2021. "Hedging renewable energy investments with Bitcoin mining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Gazheli, Ardjan & van den Bergh, Jeroen, 2018. "Real options analysis of investment in solar vs. wind energy: Diversification strategies under uncertain prices and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2693-2704.
    9. Hanne Lamberts-Van Assche & Tine Compernolle, 2022. "Using Real Options Thinking to Value Investment Flexibility in Carbon Capture and Utilization Projects: A Review," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    10. Dominik Kryzia & Michał Kopacz & Katarzyna Kryzia, 2020. "The Valuation of the Operational Flexibility of the Energy Investment Project Based on a Gas-Fired Power Plant," Energies, MDPI, vol. 13(7), pages 1-16, March.
    11. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    12. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scarcioffolo, Alexandre Ribeiro & Perobelli, Fernanda Finotti Cordeiro & Chimeli, Ariaster Baumgratz, 2018. "Counterfactual comparisons of investment options for wind power and agricultural production in the United States: Lessons from Northern Ohio," Energy Economics, Elsevier, vol. 74(C), pages 299-309.
    2. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    3. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    4. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    5. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    6. Svensson, Elin & Berntsson, Thore & Strömberg, Ann-Brith & Patriksson, Michael, 2009. "An optimization methodology for identifying robust process integration investments under uncertainty," Energy Policy, Elsevier, vol. 37(2), pages 680-685, February.
    7. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
    8. Svensson, Elin & Strömberg, Ann-Brith & Patriksson, Michael, 2011. "A model for optimization of process integration investments under uncertainty," Energy, Elsevier, vol. 36(5), pages 2733-2746.
    9. Shahnazari, Mahdi & McHugh, Adam & Maybee, Bryan & Whale, Jonathan, 2014. "Evaluation of power investment decisions under uncertain carbon policy: A case study for converting coal fired steam turbine to combined cycle gas turbine plants in Australia," Applied Energy, Elsevier, vol. 118(C), pages 271-279.
    10. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    11. Svensson, Elin & Berntsson, Thore, 2011. "Planning future investments in emerging energy technologies for pulp mills considering different scenarios for their investment cost development," Energy, Elsevier, vol. 36(11), pages 6508-6519.
    12. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    13. Zhou, Wenji & Zhu, Bing & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael & Fei, Weiyang, 2010. "Uncertainty modeling of CCS investment strategy in China's power sector," Applied Energy, Elsevier, vol. 87(7), pages 2392-2400, July.
    14. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    15. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    16. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    17. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    18. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    19. Svensson, Elin & Berntsson, Thore, 2014. "The effect of long lead times for planning of energy efficiency and biorefinery technologies at a pulp mill," Renewable Energy, Elsevier, vol. 61(C), pages 12-16.
    20. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:74-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.