IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2084-d747581.html
   My bibliography  Save this article

Trends in Renewable Electricity Generation in the G20 Countries: An Analysis of the 1990–2020 Period

Author

Listed:
  • Carla Cristiane Sokulski

    (Sustainable Production Systems Laboratory (LESP), Graduate Program in Industrial Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Ponta Grossa 84017-220, PR, Brazil)

  • Murillo Vetroni Barros

    (Sustainable Production Systems Laboratory (LESP), Graduate Program in Industrial Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Ponta Grossa 84017-220, PR, Brazil)

  • Rodrigo Salvador

    (Technical University of Denmark (DTU), Department of Engineering Technology and Didactics, Lautrupvang 15, Building Ballerup/Room E2.12, DK-2750 Ballerup, Denmark)

  • Evandro Eduardo Broday

    (Graduate Program in Industrial Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Ponta Grossa 84017-220, PR, Brazil)

  • Antonio Carlos de Francisco

    (Sustainable Production Systems Laboratory (LESP), Graduate Program in Industrial Engineering, Universidade Tecnológica Federal do Paraná (UTFPR), Ponta Grossa 84017-220, PR, Brazil)

Abstract

The use of electricity from non-renewable sources increases environmental impacts. Therefore, several countries have committed to increase the use of renewable sources. Considering the importance of the Group of Twenty (G20), this article aims to identify trends in renewable electricity supply in these countries. The data collected are from the International Energy Agency (IEA) between 1990 and 2020. The methods measured the production of each type of electricity in the G20 matrices and identified the influence of the population, Gross Domestic Product (GDP), and CO 2 emissions in renewable electricity production using multiple linear regression. In terms of results, Brazil and Canada have the most renewable electricity matrices and higher per capita renewable production than non-renewable. Saudi Arabia presented the smallest renewable matrix throughout the analyzed period. All 20 countries have varied electrical production, with different amounts of solar, wind, hydro, biomass, geothermal, and tidal energy. Countries with the highest GDP are not necessarily the largest producers of renewable electricity. Hydroelectric energy, the biggest highlight in renewable production, is making room for other sources such as wind and solar, which grew the most in terms of participation in the electrical matrices. The waste, geothermal, and tidal energy participation have shown a timid but constant growth.

Suggested Citation

  • Carla Cristiane Sokulski & Murillo Vetroni Barros & Rodrigo Salvador & Evandro Eduardo Broday & Antonio Carlos de Francisco, 2022. "Trends in Renewable Electricity Generation in the G20 Countries: An Analysis of the 1990–2020 Period," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2084-:d:747581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartolini, Andrea & Carducci, Francesco & Muñoz, Carlos Boigues & Comodi, Gabriele, 2020. "Energy storage and multi energy systems in local energy communities with high renewable energy penetration," Renewable Energy, Elsevier, vol. 159(C), pages 595-609.
    2. Yu, Bolin & Fang, Debin & Yu, Hongwei & Zhao, Chaoyang, 2021. "Temporal-spatial determinants of renewable energy penetration in electricity production: Evidence from EU countries," Renewable Energy, Elsevier, vol. 180(C), pages 438-451.
    3. Jarosław Brodny & Magdalena Tutak & Peter Bindzár, 2021. "Assessing the Level of Renewable Energy Development in the European Union Member States. A 10-Year Perspective," Energies, MDPI, vol. 14(13), pages 1-38, June.
    4. Shah, Muhammad Ibrahim & Kirikkaleli, Dervis & Adedoyin, Festus Fatai, 2021. "Regime switching effect of COVID-19 pandemic on renewable electricity generation in Denmark," Renewable Energy, Elsevier, vol. 175(C), pages 797-806.
    5. Okada, Masaki & Onishi, Terumi & Obara, Shin’ya, 2020. "A design algorithm for an electric power system using wide-area interconnection of renewable energy," Energy, Elsevier, vol. 193(C).
    6. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    7. Pablo-Romero, María P. & Sánchez-Braza, Antonio & Galyan, Anna, 2021. "Renewable energy use for electricity generation in transition economies: Evolution, targets and promotion policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea," Applied Energy, Elsevier, vol. 197(C), pages 29-39.
    9. Ibrahim Mosly & Anas A. Makki, 2018. "Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    10. Marco Raugei & Alessio Peluso & Enrica Leccisi & Vasilis Fthenakis, 2020. "Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.)," Energies, MDPI, vol. 13(15), pages 1-22, August.
    11. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Qiao, Yaning & Zhang, Xin, 2020. "Energy performance and life cycle cost assessments of a photovoltaic/thermal assisted heat pump system," Energy, Elsevier, vol. 206(C).
    12. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    13. Rosa, Carmen B. & Wendt, João Francisco M. & Chaves, Daniel M.S. & Thomasi, Virginia & Michels, Leandro & Siluk, Julio Cezar M., 2020. "Mathematical modeling for the measurement of the competitiveness index of Brazil south urban sectors for installation of photovoltaic systems," Energy Policy, Elsevier, vol. 136(C).
    14. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    15. Fraunholz, Christoph & Keles, Dogan & Fichtner, Wolf, 2021. "On the role of electricity storage in capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 149(C).
    16. Yang, Suyeon & Park, Sangchan, 2020. "The effects of renewable energy financial incentive policy and democratic governance on renewable energy aid effectiveness," Energy Policy, Elsevier, vol. 145(C).
    17. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Robert Huterski & Agnieszka Huterska & Ewa Zdunek-Rosa & Grażyna Voss, 2021. "Evaluation of the Level of Electricity Generation from Renewable Energy Sources in European Union Countries," Energies, MDPI, vol. 14(23), pages 1-18, December.
    19. Siddharth Joshi & Shivika Mittal & Paul Holloway & Priyadarshi Ramprasad Shukla & Brian Ó Gallachóir & James Glynn, 2021. "High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    20. Johannes Röder & David Beier & Benedikt Meyer & Joris Nettelstroth & Torben Stührmann & Edwin Zondervan, 2020. "Design of Renewable and System-Beneficial District Heating Systems Using a Dynamic Emission Factor for Grid-Sourced Electricity," Energies, MDPI, vol. 13(3), pages 1-22, February.
    21. Hilary Boudet & Chad Zanocco & Greg Stelmach & Mahmood Muttaqee & June Flora, 2021. "Public preferences for five electricity grid decarbonization policies in California," Review of Policy Research, Policy Studies Organization, vol. 38(5), pages 510-528, September.
    22. Pillai, Indu R. & Banerjee, Rangan, 2009. "Renewable energy in India: Status and potential," Energy, Elsevier, vol. 34(8), pages 970-980.
    23. Middelhoff, Ella & Madden, Ben & Ximenes, Fabiano & Carney, Catherine & Florin, Nick, 2022. "Assessing electricity generation potential and identifying possible locations for siting hybrid concentrated solar biomass (HCSB) plants in New South Wales (NSW), Australia," Applied Energy, Elsevier, vol. 305(C).
    24. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    25. Khan, Imran & Kabir, Zobaidul, 2020. "Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment," Renewable Energy, Elsevier, vol. 150(C), pages 320-333.
    26. Bilgili, Faik & Lorente, Daniel Balsalobre & Kuşkaya, Sevda & Ünlü, Fatma & Gençoğlu, Pelin & Rosha, Pali, 2021. "The role of hydropower energy in the level of CO2 emissions: An application of continuous wavelet transform," Renewable Energy, Elsevier, vol. 178(C), pages 283-294.
    27. Alshehry, Atef Saad & Belloumi, Mounir, 2015. "Energy consumption, carbon dioxide emissions and economic growth: The case of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 237-247.
    28. McCallum, Christopher S. & Kumar, Narendran & Curry, Robin & McBride, Katherine & Doran, John, 2021. "Renewable electricity generation for off grid remote communities; Life Cycle Assessment Study in Alaska, USA," Applied Energy, Elsevier, vol. 299(C).
    29. Villamor, Lila Vázquez & Avagyan, Vitali & Chalmers, Hannah, 2020. "Opportunities for reducing curtailment of wind energy in the future electricity systems: Insights from modelling analysis of Great Britain," Energy, Elsevier, vol. 195(C).
    30. Nam, Hoseok, 2020. "Impact of nuclear phase-out policy and energy balance in 2029 based on the 8th Basic Plan for long-term electricity supply and demand in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    31. Lee, Jonathan M. & Howard, Gregory, 2021. "The impact of technical efficiency, innovation, and climate policy on the economic viability of renewable electricity generation," Energy Economics, Elsevier, vol. 100(C).
    32. Sebi, Carine & Vernay, Anne-Lorène, 2020. "Community renewable energy in France: The state of development and the way forward," Energy Policy, Elsevier, vol. 147(C).
    33. Acaravci, Ali & Ozturk, Ilhan, 2010. "Electricity consumption-growth nexus: Evidence from panel data for transition countries," Energy Economics, Elsevier, vol. 32(3), pages 604-608, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Ewa Chomać-Pierzecka & Anna Sobczak & Edward Urbańczyk, 2022. "RES Market Development and Public Awareness of the Economic and Environmental Dimension of the Energy Transformation in Poland and Lithuania," Energies, MDPI, vol. 15(15), pages 1-18, July.
    3. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    4. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    5. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    6. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    7. Atif Jahanger & Yang Yu & Ashar Awan & Muhammad Zubair Chishti & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "The Impact of Hydropower Energy in Malaysia Under the EKC Hypothesis: Evidence From Quantile ARDL Approach," SAGE Open, , vol. 12(3), pages 21582440221, July.
    8. Belaïd, Fateh & Zrelli, Maha Harbaoui, 2019. "Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries," Energy Policy, Elsevier, vol. 133(C).
    9. Badr Eddine Lebrouhi & Éric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Post-Print hal-03716839, HAL.
    10. Bartłomiej Igliński & Michał Bernard Pietrzak, 2022. "Renewable and Sustainable Energy: Current State and Prospects," Energies, MDPI, vol. 15(13), pages 1-7, June.
    11. Michał Bernard Pietrzak & Marta Kuc-Czarnecka, 2022. "Transformation of Energy Markets: Description, Modeling of Functioning Mechanisms and Determining Development Trends," Energies, MDPI, vol. 15(15), pages 1-6, July.
    12. Shah, Muhammad Ibrahim & Foglia, Matteo & Shahzad, Umer & Fareed, Zeeshan, 2022. "Green innovation, resource price and carbon emissions during the COVID-19 times: New findings from wavelet local multiple correlation analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Karasoy, Alper, 2022. "Is innovative technology a solution to Japan's long-run energy insecurity? Dynamic evidence from the linear and nonlinear methods," Technology in Society, Elsevier, vol. 70(C).
    14. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.
    15. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M., 2014. "Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 290-298.
    16. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    18. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    19. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    20. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2084-:d:747581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.