IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2002-d746075.html
   My bibliography  Save this article

Steady-State Analysis of Electrical Networks in Pandapower Software: Computational Performances of Newton–Raphson, Newton–Raphson with Iwamoto Multiplier, and Gauss–Seidel Methods

Author

Listed:
  • Jan Vysocký

    (ENET Centre, VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

  • Ladislav Foltyn

    (IT4Innovations, VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

  • Dejan Brkić

    (IT4Innovations, VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic
    Department of Electronic Engineering, University of Niš, 18000 Niš, Serbia)

  • Renáta Praksová

    (IT4Innovations, VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

  • Pavel Praks

    (IT4Innovations, VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

Abstract

At the core of every system for the efficient control of the network steady-state operation is the AC-power-flow problem solver. For local distribution networks to continue to operate effectively, it is necessary to use the most powerful and numerically stable AC-power-flow problem solvers within the software that controls the power flows in these networks. This communication presents the results of analyses of the computational performance and stability of three methods for solving the AC-power-flow problem. Specifically, this communication compares the robustness and speed of execution of the Gauss–Seidel (G–S), Newton–Raphson (N–R), and Newton–Raphson method with Iwamoto multipliers (N–R–I), which were tested in open-source pandapower software using a meshed electrical network model of various topologies. The test results show that the pandapower implementations of the N–R method and the N–R–I method are significantly more robust and faster than the G–S method, regardless of the network topology. In addition, a generalized Python interface between the pandapower and the SciPy package was implemented and tested, and results show that the hybrid Powell, Levenberg–Marquardt, and Krylov methods, a quasilinearization algorithm, and the continuous Newton method can sometimes achieve better results than the classical N–R method.

Suggested Citation

  • Jan Vysocký & Ladislav Foltyn & Dejan Brkić & Renáta Praksová & Pavel Praks, 2022. "Steady-State Analysis of Electrical Networks in Pandapower Software: Computational Performances of Newton–Raphson, Newton–Raphson with Iwamoto Multiplier, and Gauss–Seidel Methods," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2002-:d:746075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2002/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2002/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Lohmeier & Dennis Cronbach & Simon Ruben Drauz & Martin Braun & Tanja Manuela Kneiske, 2020. "Pandapipes: An Open-Source Piping Grid Calculation Package for Multi-Energy Grid Simulations," Sustainability, MDPI, vol. 12(23), pages 1-39, November.
    2. Brkic, Dejan, 2009. "An improvement of Hardy Cross method applied on looped spatial natural gas distribution networks," Applied Energy, Elsevier, vol. 86(7-8), pages 1290-1300, July.
    3. Nikolay Novitsky & Egor Mikhailovsky, 2021. "Generalization of Methods for Calculating Steady-State Flow Distribution in Pipeline Networks for Non-Conventional Flow Models," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
    4. Majid Niazkar & Gökçen Eryılmaz Türkkan, 2021. "Application of Third-Order Schemes to Improve the Convergence of the Hardy Cross Method in Pipe Network Analysis," Advances in Mathematical Physics, Hindawi, vol. 2021, pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    3. Dejan Brkić & Pavel Praks, 2018. "Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function," Mathematics, MDPI, vol. 7(1), pages 1-15, December.
    4. Matthias Greiml & Florian Fritz & Josef Steinegger & Theresa Schlömicher & Nicholas Wolf Williams & Negar Zaghi & Thomas Kienberger, 2022. "Modelling and Simulation/Optimization of Austria’s National Multi-Energy System with a High Degree of Spatial and Temporal Resolution," Energies, MDPI, vol. 15(10), pages 1-33, May.
    5. Peter Lichtenwoehrer & Lore Abart-Heriszt & Florian Kretschmer & Franz Suppan & Gernot Stoeglehner & Georg Neugebauer, 2021. "Evaluating Spatial Interdependencies of Sector Coupling Using Spatiotemporal Modelling," Energies, MDPI, vol. 14(5), pages 1-23, February.
    6. Li, Jiaxi & Wang, Dan & Jia, Hongjie & Lei, Yang & Zhou, Tianshuo & Guo, Ying, 2022. "Mechanism analysis and unified calculation model of exergy flow distribution in regional integrated energy system," Applied Energy, Elsevier, vol. 324(C).
    7. Boghetti, Roberto & Kämpf, Jérôme H., 2024. "Verification of an open-source Python library for the simulation of district heating networks with complex topologies," Energy, Elsevier, vol. 290(C).
    8. Yifei Lu & Thiemo Pesch & Andrea Benigni, 2021. "Simulation of Coupled Power and Gas Systems with Hydrogen-Enriched Natural Gas," Energies, MDPI, vol. 14(22), pages 1-17, November.
    9. Yan, Aibin & Zhao, Jun & An, Qingsong & Zhao, Yulong & Li, Hailong & Huang, Yrjö Jun, 2013. "Hydraulic performance of a new district heating systems with distributed variable speed pumps," Applied Energy, Elsevier, vol. 112(C), pages 876-885.
    10. Zheng, Xuejing & Sun, Qihang & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & You, Shijun & Zhang, Huan & Shi, Kaiyu, 2021. "Thermo-hydraulic coupled simulation and analysis of a real large-scale complex district heating network in Tianjin," Energy, Elsevier, vol. 236(C).
    11. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Zhong, Wei & Feng, Hongcui & Wang, Xuguang & Wu, Dingfei & Xue, Minghua & Wang, Jian, 2015. "Online hydraulic calculation and operation optimization of industrial steam heating networks considering heat dissipation in pipes," Energy, Elsevier, vol. 87(C), pages 566-577.
    13. Mohsin, R. & Majid, Z.A. & Yusof, M.Z., 2014. "Safety distance between underground natural gas and water pipeline facilities," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 53-60.
    14. Nikolay Novitsky & Egor Mikhailovsky, 2021. "Generalization of Methods for Calculating Steady-State Flow Distribution in Pipeline Networks for Non-Conventional Flow Models," Mathematics, MDPI, vol. 9(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2002-:d:746075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.