IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p1987-d745773.html
   My bibliography  Save this article

Effect of Consecutive Application of Phosphorus-Enriched Biochar with Different Levels of P on Growth Performance of Maize for Two Successive Growing Seasons

Author

Listed:
  • Farman Wali

    (Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan)

  • Shahid Sardar

    (Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan)

  • Muhammad Naveed

    (Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan)

  • Muhammad Asif

    (Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan)

  • Mohammad Tahsin Karimi Nezhad

    (Department of Agronomy, College of Agriculture and Natural Resources, Sanandaj Branch, Islamic Azad University, Sanandaj 6616935391, Iran)

  • Khurram Shehzad Baig

    (Soil Fertility Institute, Lahore 53700, Pakistan)

  • Mohsin Bashir

    (Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan)

  • Adnan Mustafa

    (Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
    Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
    Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ128 00 Praha, Czech Republic)

Abstract

Sustainable management of phosphorus (P) is one of the burning issues in agriculture because the reported P losses, when applied in the form of mineral fertilizer, give rise to another issue of water pollution as P is considered one of the limiting nutrients for eutrophication and so results in costly water treatments. In the present study, the enrichment of biochar with mineral P fertilizer was supposed to reduce such losses from the soil. Additionally, P can also be recycled through this technique at the same time as biochar is derived from biomass. Biochar was prepared using wheat straw followed by its enrichment with di-ammonium phosphate (DAP) at the ratio of 1:1 on a w/w basis. The first pot trial for spring maize (cv. Neelam) was conducted using phosphorus-enriched biochar (PEB) at 0% and 1% with different levels of recommended P (0%, 25%, 50%, and 100%). The treatments were arranged factorially under a complete randomized design (CRD) with three replications. After harvesting the spring maize, pots were kept undisturbed, and a second pot trial was conducted for autumn maize in the same pots to assess the residual impact of 1% PEB. In the second pot trial, only inorganic P was applied to respective treatments because the pots contained 1% PEB supplied to spring maize. The results revealed that the application of 1% PEB at P level 50% significantly increased all the recorded plant traits (growth, yield, and physiological and chemical parameters) and some selected properties of post-harvest soil (available P, organic matter, and EC) but not soil pH. In terms of yield, 1% PEB at 50% P significantly increased both the number of grains and 100-grain weight by around 30% and 21% in spring and autumn maize, respectively, as compared to 100% P without PEB. It is therefore recommended that P-enriched biochar should be used to reduce the inorganic P fertilizer inputs; however, its application under field conditions should be assessed in future research.

Suggested Citation

  • Farman Wali & Shahid Sardar & Muhammad Naveed & Muhammad Asif & Mohammad Tahsin Karimi Nezhad & Khurram Shehzad Baig & Mohsin Bashir & Adnan Mustafa, 2022. "Effect of Consecutive Application of Phosphorus-Enriched Biochar with Different Levels of P on Growth Performance of Maize for Two Successive Growing Seasons," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:1987-:d:745773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/1987/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/1987/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Farman Wali & Muhammad Naveed & Muhammad Asaad Bashir & Muhammad Asif & Zulfiqar Ahmad & Jawaher Alkahtani & Mona S. Alwahibi & Mohamed Soliman Elshikh, 2020. "Formulation of Biochar-Based Phosphorus Fertilizer and Its Impact on Both Soil Properties and Chickpea Growth Performance," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    3. Simon Kizito & Hongzhen Luo & Jiaxin Lu & Hamidou Bah & Renjie Dong & Shubiao Wu, 2019. "Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roghayeh Mousavi & MirHassan Rasouli-Sadaghiani & Ebrahim Sepehr & Mohsen Barin & Ramesh Raju Vetukuri, 2023. "Improving Phosphorus Availability and Wheat Yield in Saline Soil of the Lake Urmia Basin through Enriched Biochar and Microbial Inoculation," Agriculture, MDPI, vol. 13(4), pages 1-16, March.
    2. Marek Vochozka & Svatopluk Janek & Lenka Širáňová, 2023. "Geopolitical deadlock and phosphate shortfall behind the price hike? Evidence from Moroccan commodity markets," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(8), pages 301-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram K. Fagodiya & Sandeep K. Malyan & Devendra Singh & Amit Kumar & Rajender K. Yadav & Parbodh C. Sharma & Himanshu Pathak, 2022. "Greenhouse Gas Emissions from Salt-Affected Soils: Mechanistic Understanding of Interplay Factors and Reclamation Approaches," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    2. Mukesh Kumar Soothar & Abdoul Kader Mounkaila Hamani & Mahendar Kumar Sootahar & Jingsheng Sun & Gao Yang & Saleem Maseeh Bhatti & Adama Traore, 2021. "Assessment of Acidic Biochar on the Growth, Physiology and Nutrients Uptake of Maize ( Zea mays L.) Seedlings under Salinity Stress," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    3. Hanuman Singh Jatav & Vishnu D. Rajput & Tatiana Minkina & Satish Kumar Singh & Sukirtee Chejara & Andrey Gorovtsov & Anatoly Barakhov & Tatiana Bauer & Svetlana Sushkova & Saglara Mandzhieva & Marina, 2021. "Sustainable Approach and Safe Use of Biochar and Its Possible Consequences," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    4. Wang, Haitao & Wang, Jiandong & Wang, Chuanjuan & Wang, Shuji & Qiu, Xuefeng & Li, Guangyong, 2022. "Adaptability of biogas slurry–water ratio and emitter types in biogas slurry drip irrigation system," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Jiri Holatko & Tereza Hammerschmiedt & Antonin Kintl & Subhan Danish & Petr Skarpa & Oldrich Latal & Tivadar Baltazar & Shah Fahad & Hanife Akça & Suleyman Taban & Eliska Kobzova & Rahul Datta & Ondre, 2021. "Effect of carbon-enriched digestate on the microbial soil activity," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-13, July.
    6. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    7. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    8. Mekuanint Lewoyehu & Yudai Kohira & Desalew Fentie & Solomon Addisu & Shinjiro Sato, 2024. "Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia," Sustainability, MDPI, vol. 16(13), pages 1-27, June.
    9. Cristiano Maboni & Tiago Bremm & Leonardo José Gonçalves Aguiar & Walkyria Bueno Scivittaro & Vanessa de Arruda Souza & Hans Rogério Zimermann & Claudio Alberto Teichrieb & Pablo Eli Soares de Oliveir, 2021. "The Fallow Period Plays an Important Role in Annual CH 4 Emission in a Rice Paddy in Southern Brazil," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    10. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    11. Sang-Mo Kang & Arjun Adhikari & Dibya Bhatta & Ho-Jun Gam & Min-Ji Gim & Joon-Ik Son & Jin Y. Shin & In-Jung Lee, 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce ( Lactuca sativa L.)," Resources, MDPI, vol. 11(2), pages 1-12, February.
    12. Mona Mijthab & Raluca Anisie & Omar Crespo, 2021. "Mosan: Combining Circularity and Participatory Design to Address Sanitation in Low-Income Communities," Circular Economy and Sustainability, Springer, vol. 1(3), pages 1165-1191, November.
    13. Xiaoshu Wang & Zheng Yan & Lingchao Song & Yangyang Wang & Jia Zhu & Nan Xu & Jinsheng Wang & Ming Chang & Lei Wang, 2021. "Preparation and Characterization of Cattail -Derived Biochar and Its Application for Cadmium Removal," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    14. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Mukhtar Ahmed & Shakeel Ahmad & Fayyaz-ul-Hassan & Ghulam Qadir & Rifat Hayat & Farid Asif Shaheen & Muhammad Ali Raza, 2019. "Innovative Processes and Technologies for Nutrient Recovery from Wastes: A Comprehensive Review," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    16. Muhammad Aon & Zeshan Aslam & Shahid Hussain & Muhammad Amjad Bashir & Muhammad Shaaban & Sajid Masood & Sidra Iqbal & Muhammad Khalid & Abdur Rehim & Walid F. A. Mosa & Lidia Sas-Paszt & Samy A. Mare, 2023. "Wheat Straw Biochar Produced at a Low Temperature Enhanced Maize Growth and Yield by Influencing Soil Properties of Typic calciargid," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    17. Luca Adami & Marco Schiavon, 2021. "From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    18. Yan-Ning Liu & Li-Yuan He, 2021. "Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism," Sustainability, MDPI, vol. 13(21), pages 1-9, October.
    19. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Eric N. Coker & Xavier Lujan-Flores & Burl Donaldson & Nadir Yilmaz & Alpaslan Atmanli, 2023. "An Assessment of the Conversion of Biomass and Industrial Waste Products to Activated Carbon," Energies, MDPI, vol. 16(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:1987-:d:745773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.