IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11336-d655892.html
   My bibliography  Save this article

The Fallow Period Plays an Important Role in Annual CH 4 Emission in a Rice Paddy in Southern Brazil

Author

Listed:
  • Cristiano Maboni

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105900, Brazil)

  • Tiago Bremm

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105900, Brazil)

  • Leonardo José Gonçalves Aguiar

    (Faculdade de Meteorologia, Universidade Federal de Pelotas (UFPel), Pelotas 96010610, Brazil)

  • Walkyria Bueno Scivittaro

    (Embrapa Clima Temperado, Pelotas 96010971, Brazil)

  • Vanessa de Arruda Souza

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105900, Brazil)

  • Hans Rogério Zimermann

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105900, Brazil)

  • Claudio Alberto Teichrieb

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105900, Brazil)

  • Pablo Eli Soares de Oliveira

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105900, Brazil)

  • Dirceu Luis Herdies

    (Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, São Paulo 12200000, Brazil)

  • Gervásio Annes Degrazia

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105900, Brazil)

  • Débora Regina Roberti

    (Departamento de Física, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105900, Brazil)

Abstract

Paddy fields are significant anthropogenic sources of methane (CH 4 ) emissions. In southern Brazil, rice is grown in lowland flooded areas once a year, followed by a long fallow period. This study aimed to measure CH 4 fluxes in a rice paddy field in southern Brazil during the rice-growing season of 2015/2016 and the following fallow period. The fluxes were estimated using the eddy covariance (EC) technique and soil chamber (SC). Diurnal and seasonal variations of CH 4 fluxes and potential meteorological drivers were analyzed. The CH 4 fluxes showed distinct diurnal variations in each analyzed subperiod (vegetative, reproductive, pre-harvest, no rice, and land preparation), characterized by a single-peak diurnal pattern. The variables that most influenced methane emissions were air and surface temperatures. In the growing season, the rice vegetative stage was responsible for most of the measured emissions. The accumulated annual emission estimated was 44.88 g CH 4 m −2 y −1 , being 64% (28.50 g CH 4 m −2 ) due to the rice-growing season and 36% (16.38 g CH 4 m −2 ) due to the fallow period. These results show the importance of including fallow periods in strategies to mitigate methane emissions in flood irrigated rice-growing areas.

Suggested Citation

  • Cristiano Maboni & Tiago Bremm & Leonardo José Gonçalves Aguiar & Walkyria Bueno Scivittaro & Vanessa de Arruda Souza & Hans Rogério Zimermann & Claudio Alberto Teichrieb & Pablo Eli Soares de Oliveir, 2021. "The Fallow Period Plays an Important Role in Annual CH 4 Emission in a Rice Paddy in Southern Brazil," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11336-:d:655892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11336/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11336/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Ngonidzashe Chirinda & Laura Arenas & Maria Katto & Sandra Loaiza & Fernando Correa & Manabu Isthitani & Ana Maria Loboguerrero & Deissy Martínez-Barón & Eduardo Graterol & Santiago Jaramillo & Carlos, 2018. "Sustainable and Low Greenhouse Gas Emitting Rice Production in Latin America and the Caribbean: A Review on the Transition from Ideality to Reality," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    3. Jos Lelieveld, 2006. "A nasty surprise in the greenhouse," Nature, Nature, vol. 443(7110), pages 405-406, September.
    4. Alberto, Ma. Carmelita R. & Wassmann, Reiner & Hirano, Takashi & Miyata, Akira & Hatano, Ryusuke & Kumar, Arvind & Padre, Agnes & Amante, Modesto, 2011. "Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines," Agricultural Water Management, Elsevier, vol. 98(9), pages 1417-1430, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    2. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Ram K. Fagodiya & Sandeep K. Malyan & Devendra Singh & Amit Kumar & Rajender K. Yadav & Parbodh C. Sharma & Himanshu Pathak, 2022. "Greenhouse Gas Emissions from Salt-Affected Soils: Mechanistic Understanding of Interplay Factors and Reclamation Approaches," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    4. Li, Cheng & Li, Zhaozhe & Zhang, Fangmin & Lu, Yanyu & Duan, Chunfeng & Xu, Yang, 2023. "Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    6. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    7. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    8. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    10. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Masoud Pourgholam-Amiji & Abdolmajid Liaghat & Arezoo Ghameshlou & Mojtaba Khoshravesh & Muhammad Mohsin Waqas, 2020. "Investigation Of The Yield And Yield Components Of Rice In Shallow Water Table And Saline," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 36-40, August.
    12. Ivan Lima & Fernando Ramos & Luis Bambace & Reinaldo Rosa, 2008. "Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(2), pages 193-206, February.
    13. Gao, Ya & Xu, Xu & Sun, Chen & Ding, Shibo & Huo, Zailin & Huang, Guanhua, 2021. "Parameterization and modeling of paddy rice (Oryza sativa L. ssp. japonica) growth and water use in cold regions: Yield and water-saving analysis," Agricultural Water Management, Elsevier, vol. 250(C).
    14. Darzi-Naftchali, Abdullah & Mirlatifi, Seyed Majid & Shahnazari, Ali & Ejlali, Farid & Mahdian, Mohammad Hossein, 2013. "Effect of subsurface drainage on water balance and water table in poorly drained paddy fields," Agricultural Water Management, Elsevier, vol. 130(C), pages 61-68.
    15. Xiaoshu Wang & Zheng Yan & Lingchao Song & Yangyang Wang & Jia Zhu & Nan Xu & Jinsheng Wang & Ming Chang & Lei Wang, 2021. "Preparation and Characterization of Cattail -Derived Biochar and Its Application for Cadmium Removal," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    16. Wang, Yu & Zhou, Li & Jia, Qingyu & Yu, Wenying, 2017. "Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China," Agricultural Water Management, Elsevier, vol. 187(C), pages 222-231.
    17. Yan-Ning Liu & Li-Yuan He, 2021. "Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism," Sustainability, MDPI, vol. 13(21), pages 1-9, October.
    18. Eric N. Coker & Xavier Lujan-Flores & Burl Donaldson & Nadir Yilmaz & Alpaslan Atmanli, 2023. "An Assessment of the Conversion of Biomass and Industrial Waste Products to Activated Carbon," Energies, MDPI, vol. 16(4), pages 1-14, February.
    19. Balázs Grosz & Björn Kemmann & Stefan Burkart & Søren O. Petersen & Reinhard Well, 2022. "Understanding the Impact of Liquid Organic Fertilisation and Associated Application Techniques on N 2 , N 2 O and CO 2 Fluxes from Agricultural Soils," Agriculture, MDPI, vol. 12(5), pages 1-20, May.
    20. Naveen-Gupta, & Eberbach, P.L. & Humphreys, E. & Balwinder-Singh, & Sudhir-Yadav, & Kukal, S.S., 2019. "Estimating soil evaporation in dry seeded rice and wheat crops after wetting events," Agricultural Water Management, Elsevier, vol. 217(C), pages 98-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11336-:d:655892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.