IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1454-d735395.html
   My bibliography  Save this article

A Smart eCook Battery-Charging System to Maximize Electric Cooking Capacity on a Hybrid PV/Diesel Mini-Grid

Author

Listed:
  • Shafiqa Keddar

    (Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Scott Strachan

    (Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

  • Stuart Galloway

    (Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK)

Abstract

In this paper, eCook batteries are considered to be synonymous with those electric cooking devices (eCook), such as electric pressure cookers, induction cookers, hotplates or rice cookers, that can be connected to and supplied from a battery, which may or may not be fully integrated within the device. Connecting many eCook batteries can have an impact on the operation of a hybrid photovoltaic (PV)/diesel mini-grid network unless managed appropriately. The network could experience voltage fluctuations, system power losses and increased peak demand if all or most of the connected eCook batteries charge during a relatively “narrow” window of sunlight hours. Hence, this paper focuses on maximizing the number of eCook devices accommodated by the mini-grid, in keeping with increased consumer uptake, by regulating the charging rate (C-rate) of the eCook batteries themselves. The impact of varying the C-rate on the network constraints is assessed through a range of contextualized case studies. This entailed modeling an innovative smart eCook battery management system (EBMS) that actively monitors the state of the grid and decides on the eCook’s battery C-rate set-point required to address the network constraints. The results demonstrate that the EBMS can alleviate the impact of conventional eCook battery charging on the mini-grid network, as well as increase the quality of the charging service.

Suggested Citation

  • Shafiqa Keddar & Scott Strachan & Stuart Galloway, 2022. "A Smart eCook Battery-Charging System to Maximize Electric Cooking Capacity on a Hybrid PV/Diesel Mini-Grid," Sustainability, MDPI, vol. 14(3), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1454-:d:735395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Bailis & Rudi Drigo & Adrian Ghilardi & Omar Masera, 2015. "The carbon footprint of traditional woodfuels," Nature Climate Change, Nature, vol. 5(3), pages 266-272, March.
    2. Shafiqa Keddar & Scott Strachan & Bartosz Soltowski & Stuart Galloway, 2021. "An Overview of the Technical Challenges Facing the Deployment of Electric Cooking on Hybrid PV/Diesel Mini-Grid in Rural Tanzania—A Case Study Simulation," Energies, MDPI, vol. 14(13), pages 1-18, June.
    3. Simon Batchelor & Ed Brown & Nigel Scott & Jon Leary, 2019. "Two Birds, One Stone—Reframing Cooking Energy Policies in Africa and Asia," Energies, MDPI, vol. 12(9), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Batchelor & Ed Brown & Nigel Scott & Matthew Leach & Anna Clements & Jon Leary, 2022. "Mutual Support—Modern Energy Planning Inclusive of Cooking—A Review of Research into Action in Africa and Asia since 2018," Energies, MDPI, vol. 15(16), pages 1-29, August.
    2. Leary, Jon & Leach, Matthew & Batchelor, Simon & Scott, Nigel & Brown, Ed, 2021. "Battery-supported eCooking: A transformative opportunity for 2.6 billion people who still cook with biomass," Energy Policy, Elsevier, vol. 159(C).
    3. Noah Ver Beek & Elvin Vindel & Matthew Kuperus Heun & Paul E. Brockway, 2020. "Quantifying the Environmental Impacts of Cookstove Transitions: A Societal Exergy Analysis Based Model of Energy Consumption and Forest Stocks in Honduras," Energies, MDPI, vol. 13(12), pages 1-22, June.
    4. Shafiqa Keddar & Scott Strachan & Stuart Galloway, 2022. "Bridging the Affordability between Battery-Supported Electric Cooking and Conventional Cooking Fuel," Energies, MDPI, vol. 15(24), pages 1-13, December.
    5. Missbach, Leonard & Steckel, Jan Christoph & Vogt-Schilb, Adrien, 2024. "Cash transfers in the context of carbon pricing reforms in Latin America and the Caribbean," World Development, Elsevier, vol. 173(C).
    6. Michael O. Dioha & Nnaemeka Vincent Emodi, 2019. "Investigating the Impacts of Energy Access Scenarios in the Nigerian Household Sector by 2030," Resources, MDPI, vol. 8(3), pages 1-18, July.
    7. Mohammad H. Pakravan & Nordica MacCarty, 2020. "What Motivates Behavior Change? Analyzing User Intentions to Adopt Clean Technologies in Low-Resource Settings Using the Theory of Planned Behavior," Energies, MDPI, vol. 13(11), pages 1-32, June.
    8. Zimmer, Tobias & Rudi, Andreas & Müller, Ann-Kathrin & Fröhling, Magnus & Schultmann, Frank, 2017. "Modeling the impact of competing utilization paths on biomass-to-liquid (BtL) supply chains," Applied Energy, Elsevier, vol. 208(C), pages 954-971.
    9. Yabei Zhang, 2022. "Accelerating Access to Clean Cooking Will Require a Heart-Head-and-Hands Approach," Development, Palgrave Macmillan;Society for International Deveopment, vol. 65(1), pages 59-62, March.
    10. repec:zbw:rwirep:0538 is not listed on IDEAS
    11. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    12. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    13. Ipsita Das & Jessica J Lewis & Ramona Ludolph & Melanie Bertram & Heather Adair-Rohani & Marc Jeuland, 2021. "The benefits of action to reduce household air pollution (BAR-HAP) model: A new decision support tool," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-22, January.
    14. Susann Stritzke & Malcolm Bricknell & Matthew Leach & Samir Thapa & Yesmeen Khalifa & Ed Brown, 2023. "Impact Financing for Clean Cooking Energy Transitions: Reviews and Prospects," Energies, MDPI, vol. 16(16), pages 1-26, August.
    15. Rose, Julian & Bensch, Gunther & Munyehirwe, Anicet & Peters, Jörg, 2022. "The forgotten coal: Charcoal demand in sub-Saharan Africa," World Development Perspectives, Elsevier, vol. 25(C).
    16. Robert Van Buskirk & Lawrence Kachione & Gilbert Robert & Rachel Kanyerere & Christina Gilbert & James Majoni, 2021. "How to Make Off-Grid Solar Electric Cooking Cheaper Than Wood-Based Cooking," Energies, MDPI, vol. 14(14), pages 1-21, July.
    17. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    18. Hollands, A.F. & Daly, H., 2023. "Modelling the integrated achievement of clean cooking access and climate mitigation goals: An energy systems optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Perros, T. & Allison, A.L. & Tomei, J. & Aketch, V. & Parikh, P., 2023. "Cleaning up the stack: Evaluating a clean cooking fuel stacking intervention in urban Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Arevalo, Javier, 2016. "Improving woodfuel governance in Burkina Faso: The experts׳ assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1398-1408.
    21. Bär, Roger & Reinhard, Jürgen & Ehrensperger, Albrecht & Kiteme, Boniface & Mkunda, Thomas & Wymann von Dach, Susanne, 2021. "The future of charcoal, firewood, and biogas in Kitui County and Kilimanjaro Region: Scenario development for policy support," Energy Policy, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1454-:d:735395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.