IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p903-d724182.html
   My bibliography  Save this article

Valuing the Impact of Forest Disturbances on the Climate Regulation Service of Western U.S. Forests

Author

Listed:
  • Raymundo Marcos-Martinez

    (CSIRO Land and Water, Canberra, ACT 2601, Australia)

  • José J. Sánchez

    (Pacific Southwest Research Station, USDA Forest Service, Riverside, CA 92507, USA)

  • Lorie Srivastava

    (Department of Environmental Science and Policy, University of California, Davis, Davis, CA 95616, USA)

  • Natthanij Soonsawad

    (CSIRO Land and Water, Canberra, ACT 2601, Australia)

  • Dominique Bachelet

    (Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA)

Abstract

The protection and expansion of forest carbon sinks are critical to achieving climate-change mitigation targets. Yet, the increasing frequency and severity of forest disturbances challenge the sustainable provision of forest services. We investigated patterns of forest disturbances’ impacts on carbon sinks by combining spatial datasets of forest carbon sequestration from biomass growth and emissions from fire and bark beetle damage in the western United States (U.S.) and valued the social costs of forest carbon losses. We also examined potential future trends of forest carbon sinks under two climate-change projections using a global vegetation model. We found that forest carbon losses from bark-beetle damage were larger than emissions from fires between 2003 and 2012. The cumulative social costs of forest carbon losses ranged from USD 7 billion to USD 72 billion, depending on the severity of global warming and the discount rate. Forest carbon stocks could increase around 5% under Representative Concentration Pathway (RCP) 4.5 or 7% under RCP 8.5 by 2091 relative to 2011 levels, mostly in forests with high net primary productivity. These results indicate that spatially explicit management of forest disturbances may increase forest carbon sinks, thereby improving opportunities to achieve critical climate-change mitigation goals.

Suggested Citation

  • Raymundo Marcos-Martinez & José J. Sánchez & Lorie Srivastava & Natthanij Soonsawad & Dominique Bachelet, 2022. "Valuing the Impact of Forest Disturbances on the Climate Regulation Service of Western U.S. Forests," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:903-:d:724182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rupert Seidl & Mart-Jan Schelhaas & Werner Rammer & Pieter Johannes Verkerk, 2014. "Correction: Corrigendum: Increasing forest disturbances in Europe and their impact on carbon storage," Nature Climate Change, Nature, vol. 4(10), pages 930-930, October.
    2. Marcos-Martinez, Raymundo & Bryan, Brett A. & Schwabe, Kurt A. & Connor, Jeffery D. & Law, Elizabeth A. & Nolan, Martin & Sánchez, José J., 2019. "Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change," Ecosystem Services, Elsevier, vol. 37(C), pages 1-1.
    3. Rupert Seidl & Mart-Jan Schelhaas & Werner Rammer & Pieter Johannes Verkerk, 2014. "Increasing forest disturbances in Europe and their impact on carbon storage," Nature Climate Change, Nature, vol. 4(9), pages 806-810, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Jahani & Maryam Saffariha, 2022. "Tree failure prediction model (TFPM): machine learning techniques comparison in failure hazard assessment of Platanus orientalis in urban forestry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 881-898, January.
    2. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2022. "Ambiguity, value of information and forest rotation decision under storm risk," Working Papers of BETA 2022-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    3. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    4. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    5. Debojyoti Chakraborty & Albert Ciceu & Dalibor Ballian & Marta Benito Garzón & Andreas Bolte & Gregor Bozic & Rafael Buchacher & Jaroslav Čepl & Eva Cremer & Alexis Ducousso & Julian Gaviria & Jan Pet, 2024. "Assisted tree migration can preserve the European forest carbon sink under climate change," Nature Climate Change, Nature, vol. 14(8), pages 845-852, August.
    6. Juutinen, Artti & Haeler, Elena & Jandl, Robert & Kuhlmey, Katharina & Kurttila, Mikko & Mäkipää, Raisa & Pohjanmies, Tähti & Rosenkranz, Lydia & Skudnik, Mitja & Triplat, Matevž & Tolvanen, Anne & Vi, 2022. "Common preferences of European small-scale forest owners towards contract-based management," Forest Policy and Economics, Elsevier, vol. 144(C).
    7. Giovanni B. Concu & Claudio Detotto & Marco Vannini, 2021. "Drivers of intentions and drivers of actions: willingness toparticipate versus actual participation in fire management inSardinia, Italy," Working Papers 018, Laboratoire Lieux, Identités, eSpaces et Activités (LISA).
    8. Julie Thomas & Marielle Brunette & Antoine Leblois, 2021. "Adapting forest management practices to climate change : Lessons from a survey of French private forest owners," Working Papers hal-03142772, HAL.
    9. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    10. Kateřina Novosadová & Jiří Kadlec & Petr Sýkora & Martin Kománek & Radek Pokorný, 2024. "Evaluation of the effect of different thinning types on dendrometric parameters and subsequent spontaneous growth in a beech-oak-linden stand," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 70(6), pages 299-316.
    11. repec:caa:jnljfs:v:preprint:id:10-2024-jfs is not listed on IDEAS
    12. Andrey N. Shikhov & Ekaterina S. Perminova & Sergey I. Perminov, 2019. "Satellite-based analysis of the spatial patterns of fire- and storm-related forest disturbances in the Ural region, Russia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 283-308, May.
    13. Gianfranco Fabbio & Paolo Cantiani & Fabrizio Ferretti & Umberto Di Salvatore & Giada Bertini & Claudia Becagli & Ugo Chiavetta & Maurizio Marchi & Luca Salvati, 2018. "Sustainable Land Management, Adaptive Silviculture, and New Forest Challenges: Evidence from a Latitudinal Gradient in Italy," Sustainability, MDPI, vol. 10(7), pages 1-14, July.
    14. Petri P. Karenlampi, 2023. "Disturbance Effects on Financial Timberland Returns in Austria," Papers 2305.00887, arXiv.org.
    15. Lars Högbom & Dalia Abbas & Kęstutis Armolaitis & Endijs Baders & Martyn Futter & Aris Jansons & Kalev Jõgiste & Andis Lazdins & Diana Lukminė & Mika Mustonen & Knut Øistad & Anneli Poska & Pasi Rauti, 2021. "Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals," Sustainability, MDPI, vol. 13(10), pages 1-12, May.
    16. Tie Zhang & Guijie Ding & Jiangping Zhang & Yujiao Qi, 2022. "Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    17. Luca Nonini & Marco Fiala, 2022. "Assessment of Forest Wood and Carbon Stock at the Stand Level: First Results of a Modeling Approach for an Italian Case Study Area of the Central Alps," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    18. Regan, Courtney M. & Connor, Jeffery D. & Summers, David M. & Settre, Claire & O’Connor, Patrick J. & Cavagnaro, Timothy R., 2020. "The influence of crediting and permanence periods on Australian forest-based carbon offset supply," Land Use Policy, Elsevier, vol. 97(C).
    19. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    20. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.
    21. Lee, Christine & Schlemme, Claire & Murray, Jessica & Unsworth, Robert, 2015. "The cost of climate change: Ecosystem services and wildland fires," Ecological Economics, Elsevier, vol. 116(C), pages 261-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:903-:d:724182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.