IDEAS home Printed from https://ideas.repec.org/a/eee/ecoser/v37y2019ic19.html
   My bibliography  Save this article

Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change

Author

Listed:
  • Marcos-Martinez, Raymundo
  • Bryan, Brett A.
  • Schwabe, Kurt A.
  • Connor, Jeffery D.
  • Law, Elizabeth A.
  • Nolan, Martin
  • Sánchez, José J.

Abstract

Forest cover gains and losses occur in response to complex environmental and anthropogenic pressures. Yet the impact of forest gains and losses on the provision of ecosystem services differs markedly. Here we investigate the social costs of potential forest carbon change in Australia’s intensive agricultural region from 2015 to 2050 using spatial forest cover change and forest carbon models combined with climate and socioeconomic projections. More than 24,000 possible scenarios were used to identify the trend and lower and upper bounds of forest cover/carbon change. Net deforestation (3.5 million hectares, Mha) under the lower bound forest cover (LBFC) projection was around one-third less than net reforestation (4.8 Mha) under the upper bound forest cover (UBFC) projection by 2030. However, the CO2 emissions (1.3 Gigatons of CO2, GtCO2) from deforestation were more than double the sequestration (0.5 GtCO2) from reforestation. The social costs (up to 134 billion dollars) of the LBFC were almost five times the benefits of the UBFC (up to 28 billion dollars). The asymmetry decreased over time but persisted to 2050. This shows the markedly different social costs of potential forest carbon losses and gains under global change, evidence which can be useful to policymakers, stakeholders, and practitioners.

Suggested Citation

  • Marcos-Martinez, Raymundo & Bryan, Brett A. & Schwabe, Kurt A. & Connor, Jeffery D. & Law, Elizabeth A. & Nolan, Martin & Sánchez, José J., 2019. "Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change," Ecosystem Services, Elsevier, vol. 37(C), pages 1-1.
  • Handle: RePEc:eee:ecoser:v:37:y:2019:i:c:19
    DOI: 10.1016/j.ecoser.2019.100935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212041618300251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecoser.2019.100935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simmons, B. Alexander & Law, Elizabeth A. & Marcos-Martinez, Raymundo & Bryan, Brett A. & McAlpine, Clive & Wilson, Kerrie A., 2018. "Spatial and temporal patterns of land clearing during policy change," Land Use Policy, Elsevier, vol. 75(C), pages 399-410.
    2. Yongyang Cai & Timothy M. Lenton & Thomas S. Lontzek, 2016. "Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction," Nature Climate Change, Nature, vol. 6(5), pages 520-525, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grover, Isobella & O'Reilly-Wapstra, Julianne & Suitor, Shaun & Hatton MacDonald, Darla, 2023. "Not seeing the accounts for the forest: A systematic literature review of ecosystem accounting for forest resource management purposes," Ecological Economics, Elsevier, vol. 212(C).
    2. Rafael Parras & Gislaine Costa de Mendonça & Renata Cristina Araújo Costa & Teresa Cristina Tarlé Pissarra & Carlos Alberto Valera & Luís Filipe Sanches Fernandes & Fernando António Leal Pacheco, 2020. "The Configuration of Forest Cover in Ribeirão Preto: A Diagnosis of Brazil’s Forest Code Implementation," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    3. Regan, Courtney M. & Connor, Jeffery D. & Summers, David M. & Settre, Claire & O’Connor, Patrick J. & Cavagnaro, Timothy R., 2020. "The influence of crediting and permanence periods on Australian forest-based carbon offset supply," Land Use Policy, Elsevier, vol. 97(C).
    4. Thomas Knoke & Nick Hanley & Rosa Maria Roman-Cuesta & Ben Groom & Frank Venmans & Carola Paul, 2023. "Trends in tropical forest loss and the social value of emission reductions," Nature Sustainability, Nature, vol. 6(11), pages 1373-1384, November.
    5. Raymundo Marcos-Martinez & José J. Sánchez & Lorie Srivastava & Natthanij Soonsawad & Dominique Bachelet, 2022. "Valuing the Impact of Forest Disturbances on the Climate Regulation Service of Western U.S. Forests," Sustainability, MDPI, vol. 14(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    2. Felix J. Formanski & Marcel M. Pein & David D. Loschelder & John-Oliver Engler & Onno Husen & Johann M. Majer, 2022. "Tipping points ahead? How laypeople respond to linear versus nonlinear climate change predictions," Climatic Change, Springer, vol. 175(1), pages 1-20, November.
    3. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    4. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    5. Martin Zapf & Hermann Pengg & Christian Weindl, 2019. "How to Comply with the Paris Agreement Temperature Goal: Global Carbon Pricing According to Carbon Budgets," Energies, MDPI, vol. 12(15), pages 1-20, August.
    6. Runst, Petrik & Höhle, David, 2022. "The German eco tax and its impact on CO2 emissions," Energy Policy, Elsevier, vol. 160(C).
    7. Elizabeth Baldwin, Yongyang Cai, Karlygash Kuralbayeva, 2018. "To build or not to build? Capital stocks and climate policy," GRI Working Papers 290, Grantham Research Institute on Climate Change and the Environment.
    8. Anthony J. Venables & Frederick Van Der Ploeg, 2022. "Radical Climate Policies," Economics Series Working Papers 990, University of Oxford, Department of Economics.
    9. Hamman, Evan & Brodie, Jon & Eberhard, Rachel & Deane, Felicity & Bode, Michael, 2022. "Regulating land use in the catchment of the Great Barrier Reef," Land Use Policy, Elsevier, vol. 115(C).
    10. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    11. Riccardo Rebonato & Riccardo Ronzani & Lionel Melin, 2023. "Robust management of climate risk damages," Risk Management, Palgrave Macmillan, vol. 25(3), pages 1-43, September.
    12. Kopczewska, Katarzyna & Ćwiakowski, Piotr, 2021. "Spatio-temporal stability of housing submarkets. Tracking spatial location of clusters of geographically weighted regression estimates of price determinants," Land Use Policy, Elsevier, vol. 103(C).
    13. Simon Willcock & Gregory S. Cooper & John Addy & John A. Dearing, 2023. "Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers," Nature Sustainability, Nature, vol. 6(11), pages 1331-1342, November.
    14. Ivan Rudik, 2020. "Optimal Climate Policy When Damages Are Unknown," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 340-373, May.
    15. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    16. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    17. Daniela Kletzan-Slamanig & Franz Sinabell, 2021. "Der Beitrag der Konjunkturbelebung zur Transformation. Einordnung von Maßnahmen der Bundesländer," WIFO Monatsberichte (monthly reports), WIFO, vol. 94(1), pages 67-78, January.
    18. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    19. Yongyang Cai & William Brock & Anastasios Xepapadeas, 2023. "Climate Change Impact on Economic Growth: Regional Climate Policy under Cooperation and Noncooperation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 569-605.
    20. Rudik, Ivan, 2019. "Optimal climate policy when damages are unknown," SocArXiv nc43k, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecoser:v:37:y:2019:i:c:19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/ecosystem-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.