IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p678-d720522.html
   My bibliography  Save this article

Response of Variation of Water and Sediment to Landscape Pattern in the Dapoling Watershed

Author

Listed:
  • Chong Wei

    (College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Zhiqiang Zhang

    (College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Zhiguo Wang

    (School of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Lianhai Cao

    (College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Yichang Wei

    (College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Xiangning Zhang

    (Institute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Science, Zhengzhou 450002, China)

  • Rongqin Zhao

    (College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Liangang Xiao

    (College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Qing Wu

    (College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

Abstract

The relationship between water-sediment processes and landscape pattern changes has currently become a research hotspot in low-carbon water and land resource optimization research. The SWAT-VRR model is a distributed hydrological model which better shows the effect of land use landscape change on hydrological processes in the watershed. In this paper, the hydrological models of the Dapoling watershed were built, the runoff and sediment yield from 2006 to 2011 were simulated, and the relationship between landscape patterns and water-sediment yield was analyzed. The results show that the SWAT-VRR model is more accurate and reasonable in describing runoff and sediment yield than the SWAT model. The sub-basins whose soil erosion is relatively light are mostly concentrated in the middle reaches with a slope mainly between 0–5°. The NP, PD, ED, SPIIT, SHEI, and SHDI of the watershed increased slightly, and the COHESION, AI, CONTAG, and LPI showed a certain decrease. The landscape pattern is further fragmented, with the degree of landscape heterogeneity increasing and the connection reducing. The runoff, sediment yield and surface runoff are all extremely significantly negatively correlated with forest, which implies that for more complicated patch shapes of forest which have longer boundaries connecting with the patches of other landscape types, the water and sediment processes are regulated more effectively. Therefore, it can be more productive to carry out research on the optimization of water and soil resources under the constraint of carbon emission based on the SWAT-VRR model.

Suggested Citation

  • Chong Wei & Zhiqiang Zhang & Zhiguo Wang & Lianhai Cao & Yichang Wei & Xiangning Zhang & Rongqin Zhao & Liangang Xiao & Qing Wu, 2022. "Response of Variation of Water and Sediment to Landscape Pattern in the Dapoling Watershed," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:678-:d:720522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bareille, Francois & Boussard, Hugues & Thenail, Claudine, 2020. "Productive ecosystem services and collective management: Lessons from a realistic landscape model," Ecological Economics, Elsevier, vol. 169(C).
    2. Boongaling, Cheamson Garret K. & Faustino-Eslava, Decibel V. & Lansigan, Felino P., 2018. "Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines," Land Use Policy, Elsevier, vol. 72(C), pages 116-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele, Bertolozzi-Caredio & Barbara, Soriano & Isabel, Bardaji & Alberto, Garrido, 2022. "Analysis of perceived robustness, adaptability and transformability of Spanish extensive livestock farms under alternative challenging scenarios," Agricultural Systems, Elsevier, vol. 202(C).
    2. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    3. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    4. Christian Mera-Parra & Fernando Oñate-Valdivieso & Priscilla Massa-Sánchez & Pablo Ochoa-Cueva, 2021. "Establishment of the Baseline for the IWRM in the Ecuadorian Andean Basins: Land Use Change, Water Recharge, Meteorological Forecast and Hydrological Modeling," Land, MDPI, vol. 10(5), pages 1-18, May.
    5. Faure, Jérôme & Mouysset, Lauriane & Gaba, Sabrina, 2023. "Combining incentives with collective action to provide pollination and a bundle of ecosystem services in farmland," Ecosystem Services, Elsevier, vol. 63(C).
    6. Vahid Moosavi & Ayoob Karami & Negin Behnia & Ronny Berndtsson & Christian Massari, 2022. "Linking Hydro-Physical Variables and Landscape Metrics using Advanced Data Mining for Stream-Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4255-4273, September.
    7. Yongfen Zhang & Nong Wang & Chongjun Tang & Shiqiang Zhang & Yuejun Song & Kaitao Liao & Xiaofei Nie, 2021. "A New Indicator to Better Represent the Impact of Landscape Pattern Change on Basin Soil Erosion and Sediment Yield in the Upper Reach of Ganjiang, China," Land, MDPI, vol. 10(9), pages 1-18, September.
    8. Francois Bareille & Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2021. "Cooperative Management of Ecosystem Services: Coalition Formation, Landscape Structure and Policies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 323-356, June.
    9. Masoomeh Yaghoobi & Alireza Vafaeenejad & Hamidreza Moradi & Hossein Hashemi, 2022. "Analysis of Landscape Composition and Configuration Based on LULC Change Modeling," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    10. Poggi, Sylvain & Sergent, Mike & Mammeri, Youcef & Plantegenest, Manuel & Le Cointe, Ronan & Bourhis, Yoann, 2021. "Dynamic role of grasslands as sources of soil-dwelling insect pests: New insights from in silico experiments for pest management strategies," Ecological Modelling, Elsevier, vol. 440(C).
    11. Shanshan Hu & Yunyun Fan & Tao Zhang, 2020. "Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing," Land, MDPI, vol. 9(1), pages 1-15, January.
    12. Yongchao Liu & Yongxue Liu & Jialin Li & Wanyun Lu & Xianglin Wei & Chao Sun, 2018. "Evolution of Landscape Ecological Risk at the Optimal Scale: A Case Study of the Open Coastal Wetlands in Jiangsu, China," IJERPH, MDPI, vol. 15(8), pages 1-21, August.
    13. Mariusz Starzec & Sabina Kordana-Obuch & Daniel Słyś, 2023. "Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area," Sustainability, MDPI, vol. 15(10), pages 1-43, May.
    14. Li-Chi Chiang & Yi-Ting Chuang & Chin-Chuan Han, 2019. "Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan," IJERPH, MDPI, vol. 16(2), pages 1-21, January.
    15. Van den Berghe, Hanne & Gheyle, W. & Stichelbaut, B. & Van Meirvenne, M. & Bourgeois, J. & Van Eetvelde, V., 2020. "Understanding the landscape dynamics from a devastated to revived cultural landscape: The case of the First World War in Flanders through the lens of landscape patterns," Land Use Policy, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:678-:d:720522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.