IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5554215.html
   My bibliography  Save this article

Research on the Capability Maturity Evaluation of Intelligent Manufacturing Based on Firefly Algorithm, Sparrow Search Algorithm, and BP Neural Network

Author

Listed:
  • Li Shi
  • Xuehong Ding
  • Min Li
  • Yuan Liu
  • Muhammad Ahmad

Abstract

Intelligent manufacturing capability evaluation is the key for enterprises to scientifically formulate the implementation path and continuously improve the level of intelligent manufacturing. To help manufacturing enterprises diagnose the level of intelligent manufacturing capability, this paper conducts research on intelligent manufacturing capability maturity evaluation based on maturity theory. The evaluation problem is a complex nonlinear problem, and BP neural network is particularly suitable for solving such complex mapping problems. Aiming at the problem that the BP neural network is sensitive to initial weights and thresholds, the sparrow search algorithm (SSA) is used to optimize the initial weights and thresholds of the BP neural network. In order to overcome the shortcoming of SSA that it is easy to fall into the local optimum, the firefly disturbance strategy is introduced to improve it, a new sparrow search algorithm (FASSA) is proposed, and on this basis, an intelligent manufacturing capability maturity evaluation model based on the FASSA-BP algorithm is constructed. Finally, a large battery manufacturing enterprise in China is selected for empirical research, and the comparison experiments are carried out on the FASSA-BP model, BP model, SSA-BP model, and PSO-BP model in terms of accuracy, stability, etc. The results show that the evaluation of intelligent manufacturing capability maturity through this model can effectively help companies diagnose problems in the construction of intelligent manufacturing and provide a reference for companies to accurately improve their intelligent manufacturing capabilities.

Suggested Citation

  • Li Shi & Xuehong Ding & Min Li & Yuan Liu & Muhammad Ahmad, 2021. "Research on the Capability Maturity Evaluation of Intelligent Manufacturing Based on Firefly Algorithm, Sparrow Search Algorithm, and BP Neural Network," Complexity, Hindawi, vol. 2021, pages 1-26, August.
  • Handle: RePEc:hin:complx:5554215
    DOI: 10.1155/2021/5554215
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5554215.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5554215.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5554215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaomin Xu & Luyao Peng & Zhengsen Ji & Shipeng Zheng & Zhuxiao Tian & Shiping Geng, 2021. "Research on Substation Project Cost Prediction Based on Sparrow Search Algorithm Optimized BP Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    2. Ji-Quan Wang & Hong-Yu Zhang & Hao-Hao Song & Pan-Li Zhang & Jin-Ling Bei, 2022. "Prediction of Pork Supply Based on Improved Mayfly Optimization Algorithm and BP Neural Network," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    3. Rui Liu & Yuanbin Mo & Yanyue Lu & Yucheng Lyu & Yuedong Zhang & Haidong Guo, 2022. "Swarm-Intelligence Optimization Method for Dynamic Optimization Problem," Mathematics, MDPI, vol. 10(11), pages 1-28, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5554215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.