IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13746-d701286.html
   My bibliography  Save this article

Research on Substation Project Cost Prediction Based on Sparrow Search Algorithm Optimized BP Neural Network

Author

Listed:
  • Xiaomin Xu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Luyao Peng

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Zhengsen Ji

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Shipeng Zheng

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Zhuxiao Tian

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Shiping Geng

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

Abstract

The prediction of power grid engineering cost is the basis of fine management of power grid engineering, and accurate prediction of substation engineering cost can effectively ensure the fine operation of engineering funds. With the continuous expansion of the engineering system, the influencing factors and data dimensions of substation project investment are gradually diversified and complex, which further increases the uncertainty and complexity of substation project cost. Based on the concept of substation engineering data space, this paper investigates the influencing factors and constructs the static total investment intelligent prediction model of substation engineering. The emerging swarm intelligence algorithm, sparrow search algorithm (SSA), is used to optimize the parameters of the BP neural network to improve the prediction accuracy and convergence speed of neural network. In order to test the validity of the model, an example analysis is carried out based on the data of a provincial substation project. It was found that the SSA-BP can effectively improve the prediction accuracy and provide new methods and approaches for practical application and research.

Suggested Citation

  • Xiaomin Xu & Luyao Peng & Zhengsen Ji & Shipeng Zheng & Zhuxiao Tian & Shiping Geng, 2021. "Research on Substation Project Cost Prediction Based on Sparrow Search Algorithm Optimized BP Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13746-:d:701286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13746/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Minhui & Zhang, Qin, 2020. "Grid parity analysis of distributed photovoltaic power generation in China," Energy, Elsevier, vol. 206(C).
    2. Dongxiao Niu & Weibo Zhao & Si Li & Rongjun Chen, 2018. "Cost Forecasting of Substation Projects Based on Cuckoo Search Algorithm and Support Vector Machines," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
    3. Tongyao Lin & Tao Yi & Chao Zhang & Jinpeng Liu, 2019. "Intelligent Prediction of the Construction Cost of Substation Projects Using Support Vector Machine Optimized by Particle Swarm Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, September.
    4. Xu, Xiaomin & Niu, Dongxiao & Xiao, Bowen & Guo, Xiaodan & Zhang, Lihui & Wang, Keke, 2020. "Policy analysis for grid parity of wind power generation in China," Energy Policy, Elsevier, vol. 138(C).
    5. Li Shi & Xuehong Ding & Min Li & Yuan Liu & Muhammad Ahmad, 2021. "Research on the Capability Maturity Evaluation of Intelligent Manufacturing Based on Firefly Algorithm, Sparrow Search Algorithm, and BP Neural Network," Complexity, Hindawi, vol. 2021, pages 1-26, August.
    6. Duan, Huiming & Pang, Xinyu, 2021. "A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China," Energy, Elsevier, vol. 229(C).
    7. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yiming & Li, Jingxiang & Fei, Liangyu & Feng, Zhiyan & Gao, Jingzhou & Yan, Wenpeng & Zhao, Shengdun, 2023. "Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network," Energy, Elsevier, vol. 268(C).
    2. Yude Yang & Yuying Luo & Lizhen Yang, 2022. "Small-Signal Stability Constrained Optimal Power Flow Model Based on BP Neural Network Algorithm," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    3. Jian Chen & Jiajun Zhu & Xu Qin & Wenxiang Xie, 2023. "Reducing Octane Number Loss in Gasoline Refining Process by Using the Improved Sparrow Search Algorithm," Sustainability, MDPI, vol. 15(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jawed Mustafa & Fahad Awjah Almehmadi & Saeed Alqaed & Mohsen Sharifpur, 2022. "Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    2. Zhu, Huimin & Xiao, Xinping & Kang, Yuxiao & Kong, Dekai, 2022. "Lead-lag grey forecasting model in the new community group buying retailing," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Li, Hui & Wu, Zixuan & Yuan, Xing & Yang, Yixuan & He, Xiaoqiang & Duan, Huiming, 2022. "The research on modeling and application of dynamic grey forecasting model based on energy price-energy consumption-economic growth," Energy, Elsevier, vol. 257(C).
    4. Wang, Rong & Hasanefendic, Sandra & Von Hauff, Elizabeth & Bossink, Bart, 2022. "The cost of photovoltaics: Re-evaluating grid parity for PV systems in China," Renewable Energy, Elsevier, vol. 194(C), pages 469-481.
    5. Tong, Mingyu & Dong, Jingrong & Luo, Xilin & Yin, Dejun & Duan, Huiming, 2022. "Coal consumption forecasting using an optimized grey model: The case of the world's top three coal consumers," Energy, Elsevier, vol. 242(C).
    6. Duan, Huiming & Nie, Weige, 2022. "A novel grey model based on Susceptible Infected Recovered Model: A case study of COVD-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    7. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    8. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    9. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    10. Yi, Yuxin & Zhang, Liming & Du, Lei & Sun, Helin, 2024. "Cross-regional integration of renewable energy and corporate carbon emissions: Evidence from China's cross-regional surplus renewable energy spot trading pilot," Energy Economics, Elsevier, vol. 135(C).
    11. Li, Hui & Nie, Weige & Duan, Huiming, 2024. "A Haavelmo grey model based on economic growth and its application to energy industry investments," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    13. Wang, Deyun & Yue, Chenqiang & ElAmraoui, Adnen, 2021. "Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    15. Rui Liu & Yuanbin Mo & Yanyue Lu & Yucheng Lyu & Yuedong Zhang & Haidong Guo, 2022. "Swarm-Intelligence Optimization Method for Dynamic Optimization Problem," Mathematics, MDPI, vol. 10(11), pages 1-28, May.
    16. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    18. Oh, Jiyoung & Min, Daiki, 2024. "Prediction of energy consumption for manufacturing small and medium-sized enterprises (SMEs) considering industry characteristics," Energy, Elsevier, vol. 300(C).
    19. He, Guanghua & Zhao, Chuankai & Liu, Chaogang & He, Runhua & Luan, Zhengxiao, 2024. "Power absorption and dynamic response analysis of a hybrid system with a semi-submersible wind turbine and a Salter's duck wave energy converter array," Energy, Elsevier, vol. 305(C).
    20. Liu, Jinpeng & Lin, Yingwen & Jiang, Mingyue & Guo, Xia, 2024. "Exploring policy support for wind power development from a balancing perspective - A study of dynamic strategies based on evolutionary game," Energy Policy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13746-:d:701286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.