IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16228-d994072.html
   My bibliography  Save this article

A Circular Economy Model to Improve Phosphate Rock Fertiliser Using Agro-Food By-Products

Author

Listed:
  • Lea Piscitelli

    (CIHEAM Bari, Via Ceglie 9, Valenzano, 70010 Bari, BA, Italy)

  • Zineb Bennani

    (CIHEAM Bari, Via Ceglie 9, Valenzano, 70010 Bari, BA, Italy)

  • Daniel El Chami

    (TIMAC AGRO Italia S.p.A., S.P.13, Località Ca’ Nova, 26010 Ripalta Arpina, CR, Italy)

  • Donato Mondelli

    (CIHEAM Bari, Via Ceglie 9, Valenzano, 70010 Bari, BA, Italy)

Abstract

Phosphorus (P) is an essential nutrient for the plant life cycle. The agricultural management of phosphorus is complicated by the inefficient use of phosphorus by plants, consequent environmental losses, and the rapid consumption of slowly renewed phosphate rock (PR). These issues represent a huge environmental burden and jeopardise food production. In this study, we proposed the combination of this fertiliser with food-processing by-products such as olive pomace, barley spent grain, and citrus pomace to increase phosphate rock solubility and the efficient use of P. Phosphate rock, by-products, and mixtures of phosphate rock and by-products were placed into litterbags and buried in sand. Periodically, one replicate per treatment was collected for the destructive measurement of total and water-soluble phosphorus. In parallel, pH, organic matter, and ash content were measured to investigate the mechanisms behind changes in P content. The mixtures’ P-release values ranged between 80% and 88%, whereas phosphate rock lost 23% of its P over 30 days. Phosphate rock showed a constant water-soluble P fraction at the four sampling times, whereas the mixtures exhibited a highly water-soluble P fraction that tended to decrease over time. Specifically, citrus pomace led to the significant and rapid release of phosphorus, barley spent grain maintained the highest water-soluble fraction over 30 days, and olive pomace was not the best-performing product but still performed better than pure phosphate rock. Moreover, the increased solubility of phosphate rock in mixtures was significantly ( p < 0.001) ascribed to the reduction in pH. The results of this experiment are promising for in vivo trials and suggest the possibility of simple and easily achievable solutions for more sustainable production systems and effective P-fertilisation strategies. Proposing such easily applicable and inexpensive solutions can reduce the distance between research achievements and field applications.

Suggested Citation

  • Lea Piscitelli & Zineb Bennani & Daniel El Chami & Donato Mondelli, 2022. "A Circular Economy Model to Improve Phosphate Rock Fertiliser Using Agro-Food By-Products," Sustainability, MDPI, vol. 14(23), pages 1-13, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16228-:d:994072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xian-mei Zhang & Yi Li & Cheng Hu & Zhen-quan He & Ming-xing Wen & Guo-sheng Gai & Zhao-hui Huang & Yu-fen Yang & Xiang-Yang Hao & Xiao-yan Li, 2019. "Enhanced Phosphorus Release from Phosphate Rock Activated with Lignite by Mechanical Microcrystallization: Effects of Several Typical Grinding Parameters," Sustainability, MDPI, vol. 11(4), pages 1-16, February.
    2. Junming Zhu & Chengming Fan & Haijia Shi & Lei Shi, 2019. "Efforts for a Circular Economy in China: A Comprehensive Review of Policies," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 110-118, February.
    3. Paul J. A. Withers & Donnacha G. Doody & Roger Sylvester-Bradley, 2018. "Achieving Sustainable Phosphorus Use in Food Systems through Circularisation," Sustainability, MDPI, vol. 10(6), pages 1-17, May.
    4. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riya Sawarkar & Adnan Shakeel & Piyush A. Kokate & Lal Singh, 2022. "Organic Wastes Augment the Eco-Restoration Potential of Bamboo Species on Fly Ash-Degraded Land: A Field Study," Sustainability, MDPI, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Carlos Piñar-Fuentes & Juan Peña-Martínez & Ana Cano-Ortiz, 2024. "Integrating Thermo-Ombroclimatic Indicators into Sustainable Olive Management: A Pathway for Innovation and Education," Agriculture, MDPI, vol. 14(12), pages 1-25, November.
    2. Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
    3. Teresa Rodríguez-Espinosa & Jose Navarro-Pedreño & Ignacio Gómez Lucas & María Belén Almendro Candel & Ana Pérez Gimeno & Manuel Jordán Vidal & Iliana Papamichael & Antonis A. Zorpas, 2022. "Environmental Risk from Organic Residues," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    4. Julia Prüter & Sebastian Marcus Strauch & Lisa Carolina Wenzel & Wantana Klysubun & Harry Wilhelm Palm & Peter Leinweber, 2020. "Organic Matter Composition and Phosphorus Speciation of Solid Waste from an African Catfish Recirculating Aquaculture System," Agriculture, MDPI, vol. 10(10), pages 1-14, October.
    5. Wawrzyniec Czubak & Jagoda Zmyślona, 2024. "Possibilities of Changes in Energy Intensity of Production Depending on the Scale of Farm Investments in a Polish Region," Energies, MDPI, vol. 17(18), pages 1-14, September.
    6. Cristina Maranesi & Pietro De Giovanni, 2020. "Modern Circular Economy: Corporate Strategy, Supply Chain, and Industrial Symbiosis," Sustainability, MDPI, vol. 12(22), pages 1-25, November.
    7. Zhang, Chonghui & Li, Xiangwen & Sun, Yunfei & Chen, Ji & Streimikiene, Dalia, 2023. "Policy modeling consistency analysis during energy crises: Evidence from China's coal power policy," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    8. Mathivathanan, Deepak & Mathiyazhagan, K. & Khorana, Sangeeta & Rana, Nripendra P. & Arora, Bimal, 2022. "Drivers of circular economy for small and medium enterprises: Case study on the Indian state of Tamil Nadu," Journal of Business Research, Elsevier, vol. 149(C), pages 997-1015.
    9. Chenyujing Yang & Yuanyuan Zhang & Yanjin Xue & Yongji Xue, 2022. "Toward a Socio-Political Approach to Promote the Development of Circular Agriculture: A Critical Review," IJERPH, MDPI, vol. 19(20), pages 1-18, October.
    10. Celia Burgaz & Vanessa Gorasso & Wouter M. J. Achten & Carolina Batis & Luciana Castronuovo & Adama Diouf & Gershim Asiki & Boyd A. Swinburn & Mishel Unar-Munguía & Brecht Devleesschauwer & Gary Sacks, 2023. "The effectiveness of food system policies to improve nutrition, nutrition-related inequalities and environmental sustainability: a scoping review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 15(5), pages 1313-1344, October.
    11. Hervé Corvellec & Alison F. Stowell & Nils Johansson, 2022. "Critiques of the circular economy," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 421-432, April.
    12. Wen-Kuo Chen & Ching-Torng Lin, 2021. "Interrelationship among CE Adoption Obstacles of Supply Chain in the Textile Sector: Based on the DEMATEL-ISM Approach," Mathematics, MDPI, vol. 9(12), pages 1-24, June.
    13. Piero Morseletto, 2020. "Restorative and regenerative: Exploring the concepts in the circular economy," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 763-773, August.
    14. Gebhardt, Maximilian & Spieske, Alexander & Birkel, Hendrik, 2022. "The future of the circular economy and its effect on supply chain dependencies: Empirical evidence from a Delphi study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    15. Qunfang Xu & Kairui Cao & Jiaying Dai & Yuanyuan Zhu & Yue Dai, 2023. "Nonlinear Effects of Eco-Industrial Parks on Sulfur Dioxide and Carbon Dioxide Emissions—Estimation Based on Nonlinear DID," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    16. Maria M. Makwela & Rob Slotow & Thinandavha C. Munyai, 2023. "Carabid Beetles (Coleoptera) as Indicators of Sustainability in Agroecosystems: A Systematic Review," Sustainability, MDPI, vol. 15(5), pages 1-12, February.
    17. Muhammad Faraz & Valentina Mereu & Donatella Spano & Antonio Trabucco & Serena Marras & Daniel El Chami, 2023. "A Systematic Review of Analytical and Modelling Tools to Assess Climate Change Impacts and Adaptation on Coffee Agrosystems," Sustainability, MDPI, vol. 15(19), pages 1-19, October.
    18. Nana Fang & Shuai Liang & Huimin Dai & Hongye Xiao & Xiaomeng Han & Guodong Liu, 2022. "The Improved Phosphorus Solubility of Mechanochemically Activated Phosphate Rock and Its Effect on Soil-Available Phosphorus in Weakly Acidic Soil," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    19. Agnė Žičkienė & Rasa Melnikienė & Mangirdas Morkūnas & Artiom Volkov, 2022. "CAP Direct Payments and Economic Resilience of Agriculture: Impact Assessment," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    20. Rocío González-Sánchez & Davide Settembre-Blundo & Anna Maria Ferrari & Fernando E. García-Muiña, 2020. "Main Dimensions in the Building of the Circular Supply Chain: A Literature Review," Sustainability, MDPI, vol. 12(6), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16228-:d:994072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.