IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6863-d660382.html
   My bibliography  Save this article

Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective

Author

Listed:
  • Antonello Monsù Scolaro

    (Department of Architecture, Design and Urban Planning, University of Sassari, 07100 Sassari, Italy)

  • Stefania De Medici

    (Department of Civil Engineering and Architecture, University of Catania, 96100 Siracusa, Italy)

Abstract

The abandonment of the built heritage, as a result of functional or technological obsolescence or as a consequence of cultural, social, and economic trends, is steadily increasing. This great number of buildings, worldwide spread, offers a huge opportunity to reduce the environmental impacts related to the construction industry. Nonetheless, the recovery and reuse interventions that require the implementation of residual technological performance, to accommodate new uses, are not always environmentally neutral. Therefore, a new design approach needs to be developed so as to improve the buildings’ technological performance and enhance resources and energy already incorporated in buildings. The circular economy principles in the building sector, performance-based building design together with downcycling and upcycling theories are applied to develop a methodology aiming to reduce the environmental impacts within the rehabilitation and refurbishment design process. Starting from the building analysis phase (historical, material, construction) residual performance is evaluated; then the design phase demonstrates that, according to downcycling and upcycling design strategies applied on building components and materials, it is possible improving the building to the required new uses while minimizing transformations and effectively reducing related environmental impacts. The reduction of environmental impacts depends on a careful assessment of the residual technological and structural performance that the building still provides, by involving limited performance implementations to balance rehabilitation needs and environmental protection goals.

Suggested Citation

  • Antonello Monsù Scolaro & Stefania De Medici, 2021. "Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective," Energies, MDPI, vol. 14(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6863-:d:660382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John A. Mathews & Hao Tan, 2011. "Progress Toward a Circular Economy in China," Journal of Industrial Ecology, Yale University, vol. 15(3), pages 435-457, June.
    2. Jaime A. Mesa & Carlos Fúquene-Retamoso & Aníbal Maury-Ramírez, 2021. "Life Cycle Assessment on Construction and Demolition Waste: A Systematic Literature Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    3. Ferreira, Joaquim & Pinheiro, Manuel Duarte & Brito, Jorge de, 2013. "Refurbishment decision support tools review—Energy and life cycle as key aspects to sustainable refurbishment projects," Energy Policy, Elsevier, vol. 62(C), pages 1453-1460.
    4. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    5. Martina Gentili & Joris Hoekstra, 2019. "Houses without people and people without houses: a cultural and institutional exploration of an Italian paradox," Housing Studies, Taylor & Francis Journals, vol. 34(3), pages 425-447, March.
    6. Junming Zhu & Chengming Fan & Haijia Shi & Lei Shi, 2019. "Efforts for a Circular Economy in China: A Comprehensive Review of Policies," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 110-118, February.
    7. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Cabeza, Luisa F. & Barreneche, Camila & Miró, Laia & Morera, Josep M. & Bartolí, Esther & Inés Fernández, A., 2013. "Low carbon and low embodied energy materials in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 536-542.
    9. R.M. Ball, 2002. "Re use potential and vacant industrial premises: revisiting the regeneration issue in Stoke-on-Trent," Journal of Property Research, Taylor & Francis Journals, vol. 19(2), pages 93-110, January.
    10. Ricardo Ramírez-Villegas & Ola Eriksson & Thomas Olofsson, 2019. "Life Cycle Assessment of Building Renovation Measures–Trade-off between Building Materials and Energy," Energies, MDPI, vol. 12(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cyrine Mrad & Luís Frölén Ribeiro, 2022. "A Review of Europe’s Circular Economy in the Building Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    2. Qi Duan & Lihui Qi & Renyu Cao & Peng Si, 2022. "Research on Sustainable Reuse of Urban Ruins Based on Artificial Intelligence Technology: A Study of Guangzhou," Sustainability, MDPI, vol. 14(22), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chau, C.K. & Xu, J.M. & Leung, T.M. & Ng, W.Y., 2017. "Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building," Applied Energy, Elsevier, vol. 185(P2), pages 1595-1603.
    2. Mathivathanan, Deepak & Mathiyazhagan, K. & Khorana, Sangeeta & Rana, Nripendra P. & Arora, Bimal, 2022. "Drivers of circular economy for small and medium enterprises: Case study on the Indian state of Tamil Nadu," Journal of Business Research, Elsevier, vol. 149(C), pages 997-1015.
    3. Kong, Minjin & Ji, Changyoon & Hong, Taehoon & Kang, Hyuna, 2022. "Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    5. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    6. Karel Struhala & Milan Ostrý, 2021. "Life-Cycle Assessment of a Rural Terraced House: A Struggle with Sustainability of Building Renovations," Energies, MDPI, vol. 14(9), pages 1-18, April.
    7. Vidhyalakshmi Chandrasekaran & Jolanta Dvarioniene & Ausrine Vitkute & Giedrius Gecevicius, 2021. "Environmental Impact Assessment of Renovated Multi-Apartment Building Using LCA Approach: Case Study from Lithuania," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    8. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    9. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    10. Roh, Seungjun & Tae, Sungho & Shin, Sungwoo, 2014. "Development of building materials embodied greenhouse gases assessment criteria and system (BEGAS) in the newly revised Korea Green Building Certification System (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 410-421.
    11. Ingrao, Carlo & Lo Giudice, Agata & Bacenetti, Jacopo & Tricase, Caterina & Dotelli, Giovanni & Fiala, Marco & Siracusa, Valentina & Mbohwa, Charles, 2015. "Energy and environmental assessment of industrial hemp for building applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 29-42.
    12. Mohammed Sakib Uddin & Khaled Mahmud & Bijoy Mitra & Al-Ekram Elahee Hridoy & Syed Masiur Rahman & Md Shafiullah & Md. Shafiul Alam & Md. Ismail Hossain & Mohammad Sujauddin, 2023. "Coupling Nexus and Circular Economy to Decouple Carbon Emissions from Economic Growth," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    13. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    14. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    15. Anna Życzyńska & Dariusz Majerek & Zbigniew Suchorab & Agnieszka Żelazna & Václav Kočí & Robert Černý, 2021. "Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting," Energies, MDPI, vol. 14(6), pages 1-19, March.
    16. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    17. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    18. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    19. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    20. Sungwoo Lee & Sungho Tae & Seungjun Roh & Taehyung Kim, 2015. "Green Template for Life Cycle Assessment of Buildings Based on Building Information Modeling: Focus on Embodied Environmental Impact," Sustainability, MDPI, vol. 7(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6863-:d:660382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.