IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121008601.html
   My bibliography  Save this article

Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India

Author

Listed:
  • Hiloidhari, Moonmoon
  • Vijay, Vandit
  • Banerjee, Rangan
  • Baruah, D.C.
  • Rao, Anand B.

Abstract

Sugarcane bagasse-based cogeneration contributes significantly to bioenergy conversion in India and therefore, appropriate performance analysis is required considering the regional factors. Further increase of sugarcane bioenergy is expected in India with the Government's mandate to enhance the share of renewable energy by 2030. Herein this study, district-wise sugarcane bagasse cogeneration potential is assessed in the state Maharashtra, India. Variations in energy, carbon and water footprint of energy generated from bagasse-based cogeneration plants are also assessed for all the districts considering farm to gate attributional life cycle assessment (ALCA). Avoided product function (also called as System expansion) of simaPro 9.2 LCA software is used to assess the environmental benefits of sugarcane waste or by-products (leaves and tops, press-mud and bagasse ash). The annual bagasse production potential in Maharashtra is 19 million tonne, equivalent to 8206 GWh of cogenerated electricity. The potential varies markedly among the districts (2–1500 GWh). Nearly 81 % of cogeneration potential is concentrated in 6 districts alone. The life cycle carbon footprint (0.075–0.2 kg CO2e/kWh), the energy footprint (0.75–2.12 MJ/kWh) and the water footprint (206–516 L/kWh)-all the three estimated on the life cycle basis- differ considerably among the districts. The nexus among water, energy, and carbon footprint for sugarcane bioenergy is also analyzed to understand the complex interconnectivities among these individual resources. Cultivating high yielding varieties, use of renewable energy-based micro-irrigation, and installing modern cogeneration technology can lower the estimated carbon, energy and water footprint by up to 50 %. Such measures will help enhance farmers' income while addressing the sustainability issues in India.

Suggested Citation

  • Hiloidhari, Moonmoon & Vijay, Vandit & Banerjee, Rangan & Baruah, D.C. & Rao, Anand B., 2021. "Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008601
    DOI: 10.1016/j.rser.2021.111583
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pachón, Elia Ruiz & Vaskan, Pavel & Raman, Jegannathan Kenthorai & Gnansounou, Edgard, 2018. "Transition of a South African sugar mill towards a biorefinery. A feasibility assessment," Applied Energy, Elsevier, vol. 229(C), pages 1-17.
    2. Carpio, Lucio Guido Tapia & Simone de Souza, Fábio, 2017. "Optimal allocation of sugarcane bagasse for producing bioelectricity and second generation ethanol in Brazil: Scenarios of cost reductions," Renewable Energy, Elsevier, vol. 111(C), pages 771-780.
    3. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    4. García, Carlos A. & Fuentes, Alfredo & Hennecke, Anna & Riegelhaupt, Enrique & Manzini, Fabio & Masera, Omar, 2011. "Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico," Applied Energy, Elsevier, vol. 88(6), pages 2088-2097, June.
    5. Chauhan, Manish Kumar & Varun & Chaudhary, Sachin & Kumar, Suneel & Samar, 2011. "Life cycle assessment of sugar industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3445-3453, September.
    6. Matthias Finkbeiner & Erwin M. Schau & Annekatrin Lehmann & Marzia Traverso, 2010. "Towards Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 2(10), pages 1-14, October.
    7. Hao Li & Yuhuan Zhao & Jiang Lin, 2020. "A review of the energy–carbon–water nexus: Concepts, research focuses, mechanisms, and methodologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    8. Arkadiusz Dyjakon, 2018. "Harvesting and Baling of Pruned Biomass in Apple Orchards for Energy Production," Energies, MDPI, vol. 11(7), pages 1-14, June.
    9. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    10. Mohammadi, Fateme & Roedl, Anne & Abdoli, Mohammad Ali & Amidpour, Majid & Vahidi, Hossein, 2020. "Life cycle assessment (LCA) of the energetic use of bagasse in Iranian sugar industry," Renewable Energy, Elsevier, vol. 145(C), pages 1870-1882.
    11. Kshirsagar, K. G., 2008. "Impact of organic sugarcane farming on economics and water use efficiency in maharashtra," Conference Papers h043609, International Water Management Institute.
    12. Sarah Wettstein & Karen Muir & Deborah Scharfy & Matthias Stucki, 2017. "The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    13. Nguyen, Thu Lan T. & Gheewala, Shabbir H. & Garivait, Savitri, 2008. "Full chain energy analysis of fuel ethanol from cane molasses in Thailand," Applied Energy, Elsevier, vol. 85(8), pages 722-734, August.
    14. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    15. Baruah, Debendra C. & Bora, Ganesh C., 2008. "Energy demand forecast for mechanized agriculture in rural India," Energy Policy, Elsevier, vol. 36(7), pages 2628-2636, July.
    16. Khatiwada, Dilip & Silveira, Semida, 2009. "Net energy balance of molasses based ethanol: The case of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2515-2524, December.
    17. Dingre, S.K. & Gorantiwar, S.D., 2020. "Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region," Agricultural Water Management, Elsevier, vol. 232(C).
    18. Zubaryeva, Alyona & Zaccarelli, Nicola & Del Giudice, Cecilia & Zurlini, Giovanni, 2012. "Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion – Mediterranean case study," Renewable Energy, Elsevier, vol. 39(1), pages 261-270.
    19. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longo, Sonia & Cellura, Maurizio & Luu, Le Quyen & Nguyen, Thanh Quang & Rincione, Roberta & Guarino, Francesco, 2024. "Circular economy and life cycle thinking applied to the biomass supply chain: A review," Renewable Energy, Elsevier, vol. 220(C).
    2. Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2022. "Exergy-based weighted optimization and smart decision-making for renewable energy systems considering economics, reliability, risk, and environmental assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soam, Shveta & Kumar, Ravindra & Gupta, Ravi P. & Sharma, Pankaj K. & Tuli, Deepak K. & Das, Biswapriya, 2015. "Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme," Energy, Elsevier, vol. 83(C), pages 307-315.
    2. Lopes Silva, Diogo Aparecido & Delai, Ivete & Delgado Montes, Mary Laura & Roberto Ometto, Aldo, 2014. "Life cycle assessment of the sugarcane bagasse electricity generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 532-547.
    3. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    4. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    5. García, Carlos A. & Manzini, Fabio & Islas, Jorge M., 2017. "Sustainability assessment of ethanol production from two crops in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1199-1207.
    6. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Ghanavati, Hossein & Khoshnevisan, Benyamin & Rafiee, Shahin, 2015. "Comparative life cycle assessment of different municipal solid waste management scenarios in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 886-898.
    7. Machin, Einara Blanco & Pedroso, Daniel Travieso & Machín, Adrian Blanco & Acosta, Daviel Gómez & Silva dos Santos, Maria Isabel & Solferini de Carvalho, Felipe & Pérez, Néstor Proenza & Pascual, Rodr, 2021. "Biomass integrated gasification-gas turbine combined cycle (BIG/GTCC) implementation in the Brazilian sugarcane industry: Economic and environmental appraisal," Renewable Energy, Elsevier, vol. 172(C), pages 529-540.
    8. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    9. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.
    10. Chauhan, Manish Kumar & Varun & Chaudhary, Sachin & Kumar, Suneel & Samar, 2011. "Life cycle assessment of sugar industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3445-3453, September.
    11. Lopes Silva, Diogo Aparecido & de Oliveira, José Augusto & Saavedra, Yovana M.B. & Ometto, Aldo Roberto & Rieradevall i Pons, Joan & Gabarrell Durany, Xavier, 2015. "Combined MFA and LCA approach to evaluate the metabolism of service polygons: A case study on a university campus," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 157-168.
    12. García-Bustamante Carlos Alberto & Aguilar-Rivera Noé & Zepeda-Pirrón Manuel & Armendáriz-Arnez Cynthia, 2018. "Development of indicators for the sustainability of the sugar industry," Environmental & Socio-economic Studies, Sciendo, vol. 6(4), pages 22-38, December.
    13. Eshton, Bilha & Katima, Jamidu H.Y., 2015. "Carbon footprints of production and use of liquid biofuels in Tanzania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 672-680.
    14. Adamantia Zoi Vougioukli & Eleni Didaskalou & Dimitrios Georgakellos, 2017. "Financial Appraisal of Small Hydro-Power Considering the Cradle-to-Grave Environmental Cost: A Case from Greece," Energies, MDPI, vol. 10(4), pages 1-20, March.
    15. Traverso L. & Mazzoli E. & Miller C. & Pulighe G. & Perelli C. & Morese M. M. & Branca G., 2021. "Cost Benefit and Risk Analysis of Low iLUC Bioenergy Production in Europe Using Monte Carlo Simulation," Energies, MDPI, vol. 14(6), pages 1-18, March.
    16. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    17. G. Gnanachandrasamy & C. Dushiyanthan & T. Jeyavel Rajakumar & Yongzhang Zhou, 2020. "Assessment of hydrogeochemical characteristics of groundwater in the lower Vellar river basin: using Geographical Information System (GIS) and Water Quality Index (WQI)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 759-789, February.
    18. Kristina Henzler & Stephanie D. Maier & Michael Jäger & Rafael Horn, 2020. "SDG-Based Sustainability Assessment Methodology for Innovations in the Field of Urban Surfaces," Sustainability, MDPI, vol. 12(11), pages 1-32, June.
    19. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    20. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.