IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15751-d985080.html
   My bibliography  Save this article

Physical and Chemical Characteristics of Agricultural-Plastic Wastes for Feasibility of Solid Fuel Briquette Production

Author

Listed:
  • Nurul Ain Ab Jalil

    (Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Nur Asyikin Mokhtaruddin

    (Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Chin Hua Chia

    (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Irfana Kabir Ahmad

    (Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia)

  • Mohamad Jani Saad

    (Malaysian Agricultural Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang 43400, Malaysia)

  • Mahanim Sarif

    (Forest Research Institute Malaysia (FRIM), Kepong 52109, Malaysia)

Abstract

In recent years, the world has witnessed an enormous effort to find a replacement energy source that is more environmentally friendly and renewable. Face masks that contain plastics lead to another management problem as they are non-biodegradable. Thus, by turning agricultural waste with plastic waste as an additive into beneficial products like briquettes, a solid waste problem can be minimized. In this study, Imperata cylindrica and mango peel commonly found in Malaysia were anticipated to boost the properties of solid fuel briquettes. Thus, the characterization of Imperata cylindrica , mango peel, and face mask waste as raw materials for the production of solid fuel briquettes is discussed in this paper. Proximate and ultimate analyses as well as Fourier transform-infrared (FTIR) were conducted to obtain the properties of the raw materials. FTIR results showed that face mask waste contained a methyl type group (CH 3 ), and both agricultural wastes contained an oxygen type group (C–O–H). Based on the proximate analysis, face mask waste, mango peel, and Imperata cylindrica had low moisture contents, where mango peel had the highest moisture content (5.2%) followed by Imperata cylindrica (<1%) and face mask waste (<1%). Imperata cylindrica had the highest volatile matter content (94.6%) and the lowest ash content (2.3%), while mango peel contained the highest fixed carbon value, which was 16.1%. From the analyses conducted, face mask waste had the highest calorific value (26.19 MJ/ kg − 1 ) . Face mask waste contained 63.6% carbon and 10% hydrogen. Meanwhile, Imperata cylindrica and mango peel contained 44% and 40% carbon and 6.15% and 6.95% hydrogen, respectively. The characteristics and properties of face mask waste, mango peel, and Imperata cylindrica are significant for the contribution of the optimal ratio of these materials to form solid fuel briquettes.

Suggested Citation

  • Nurul Ain Ab Jalil & Nur Asyikin Mokhtaruddin & Chin Hua Chia & Irfana Kabir Ahmad & Mohamad Jani Saad & Mahanim Sarif, 2022. "Physical and Chemical Characteristics of Agricultural-Plastic Wastes for Feasibility of Solid Fuel Briquette Production," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15751-:d:985080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Purohit, Pallav & Tripathi, Arun Kumar & Kandpal, Tara Chandra, 2006. "Energetics of coal substitution by briquettes of agricultural residues," Energy, Elsevier, vol. 31(8), pages 1321-1331.
    2. Gangil, Sandip & Bhargav, Vinod Kumar, 2019. "Influences of binderless briquetting stresses on intrinsic bioconstituents of rice straw based solid biofuel," Renewable Energy, Elsevier, vol. 133(C), pages 462-469.
    3. Anna Brunerová & Hynek Roubík & Milan Brožek & David Herák & Vladimír Šleger & Jana Mazancová, 2017. "Potential of Tropical Fruit Waste Biomass for Production of Bio-Briquette Fuel: Using Indonesia as an Example," Energies, MDPI, vol. 10(12), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Brunerová & Hynek Roubík & Milan Brožek, 2018. "Bamboo Fiber and Sugarcane Skin as a Bio-Briquette Fuel," Energies, MDPI, vol. 11(9), pages 1-20, August.
    2. Lam, Hon Loong & Ng, Wendy P.Q. & Ng, Rex T.L. & Ng, Ern Huay & Aziz, Mustafa K. Abdul & Ng, Denny K.S., 2013. "Green strategy for sustainable waste-to-energy supply chain," Energy, Elsevier, vol. 57(C), pages 4-16.
    3. Purohit, Pallav, 2007. "Financial evaluation of renewable energy technologies for irrigation water pumping in India," Energy Policy, Elsevier, vol. 35(6), pages 3134-3144, June.
    4. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
    5. liu, Zhijia & Jiang, Zehui & Cai, Zhiyong & Fei, Benhua & YanYu, & Liu, Xing'e, 2013. "Effects of carbonization conditions on properties of bamboo pellets," Renewable Energy, Elsevier, vol. 51(C), pages 1-6.
    6. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    7. Luo, S.Y. & Xiao, B. & Hu, Z.Q. & Liu, S.M. & Guan, Y.W., 2009. "Experimental study on oxygen-enriched combustion of biomass micro fuel," Energy, Elsevier, vol. 34(11), pages 1880-1884.
    8. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    9. Sławomir Francik & Adrian Knapczyk & Artur Knapczyk & Renata Francik, 2020. "Decision Support System for the Production of Miscanthus and Willow Briquettes," Energies, MDPI, vol. 13(6), pages 1-24, March.
    10. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    11. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    12. Casal, M.D. & Gil, M.V. & Pevida, C. & Rubiera, F. & Pis, J.J., 2010. "Influence of storage time on the quality and combustion behaviour of pine woodchips," Energy, Elsevier, vol. 35(7), pages 3066-3071.
    13. Lin, Boqiang & Liu, Weisheng, 2017. "Estimation of energy substitution effect in China's machinery industry--based on the corrected formula for elasticity of substitution," Energy, Elsevier, vol. 129(C), pages 246-254.
    14. Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
    15. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
    16. Gangil, Sandip, 2015. "Benefits of weakening in thermogravimetric signals of hemicellulose and lignin for producing briquettes from soybean crop residue," Energy, Elsevier, vol. 81(C), pages 729-737.
    17. Avellán, Tamara & Gremillion, Paul, 2019. "Constructed wetlands for resource recovery in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 42-57.
    18. Thomas, Paul & Soren, Nirmala & Rumjit, Nelson Pynadathu & George James, Jake & Saravanakumar, M.P., 2017. "Biomass resources and potential of anaerobic digestion in Indian scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 718-730.
    19. Hu, Jianjun & Lei, Tingzhou & Wang, Zhiwei & Yan, Xiaoyu & Shi, Xinguang & Li, Zaifeng & He, Xiaofeng & Zhang, Quanguo, 2014. "Economic, environmental and social assessment of briquette fuel from agricultural residues in China – A study on flat die briquetting using corn stalk," Energy, Elsevier, vol. 64(C), pages 557-566.
    20. Gangil, Sandip, 2015. "Superiority of intrinsic biopolymeric constituents in briquettes of lignocellulosic crop residues over wood: A TG-diagnosis," Renewable Energy, Elsevier, vol. 76(C), pages 478-483.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15751-:d:985080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.