IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124007067.html
   My bibliography  Save this article

Production of sawdust and chicken fat briquettes as an alternative solid fuel

Author

Listed:
  • Imberti, Rodrigo Mazolini
  • Carvalho Padilha, Janine
  • da Silva Arrieche, Leonardo

Abstract

This study focuses on converting underutilized or discarded sawdust from Eucalyptus grandis (EG) and Pinus elliottii (PE), along with roasting chicken oil (RCO) and chicken visceral oil (CVO), into alternative briquettes. Employing heuristic methods and branch-and-bound techniques, 27 experiments were conducted based on a central composite design (CCD), including two central point repetitions. The energy density (ED) of the briquettes was evaluated immediately after production (EDi) and three months later (EDf). The higher heating value (HHV), thermogravimetric analysis (TGA) with its first derivative, and cost of each briquette were also characterized. Increasing chicken oil content improved HHV, initial ED, reduced ash content, and enhanced thermal degradation performance. However, exceeding 15% oil content caused wastage during pressing. Excessive CVO use is cost-prohibitive unless produced by the poultry industry. The optimal briquette was obtained in experiment 9 with 21.25% EG, 63.75% PE, 3.75% CVO, and 11.25% RCO by mass. Structural neighbors were identified based on this composition. Sawdust type and particle size had minimal impact on the results.

Suggested Citation

  • Imberti, Rodrigo Mazolini & Carvalho Padilha, Janine & da Silva Arrieche, Leonardo, 2024. "Production of sawdust and chicken fat briquettes as an alternative solid fuel," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007067
    DOI: 10.1016/j.renene.2024.120638
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124007067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120638?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dongji & Liu, Liansheng & Yuan, Ye & Yang, Hua & Zhou, Yixing & Duan, Ruanze, 2020. "Design and key heating power parameters of a newly-developed household biomass briquette heating boiler," Renewable Energy, Elsevier, vol. 147(P1), pages 1371-1379.
    2. Dudziec, Paweł & Stachowicz, Paweł & Stolarski, Mariusz J., 2023. "Diversity of properties of sawmill residues used as feedstock for energy generation," Renewable Energy, Elsevier, vol. 202(C), pages 822-833.
    3. Mendoza-Martinez, Clara & Sermyagina, Ekaterina & Saari, Jussi & Ramos, Vinicius Faria & Vakkilainen, Esa & Cardoso, Marcelo & Alves Rocha, Elém Patrícia, 2023. "Fast oxidative pyrolysis of eucalyptus wood residues to replace fossil oil in pulp industry," Energy, Elsevier, vol. 263(PE).
    4. Marreiro, Hívila M.P. & Peruchi, Rogério S. & Lopes, Riuzuani M.B.P. & Rotella Junior, Paulo, 2024. "Briquetting process optimization of poultry litter and urban wood waste," Renewable Energy, Elsevier, vol. 222(C).
    5. Yang, Yang & Sun, Mingman & Zhang, Meng & Zhang, Ke & Wang, Donghai & Lei, Catherine, 2019. "A fundamental research on synchronized torrefaction and pelleting of biomass," Renewable Energy, Elsevier, vol. 142(C), pages 668-676.
    6. Granado, Marcos Paulo Patta & Suhogusoff, Yuri Valentinovich Machado & Santos, Luis Ricardo Oliveira & Yamaji, Fabio Minoru & De Conti, Andrea Cressoni, 2021. "Effects of pressure densification on strength and properties of cassava waste briquettes," Renewable Energy, Elsevier, vol. 167(C), pages 306-312.
    7. Gangil, Sandip & Bhargav, Vinod Kumar, 2019. "Influences of binderless briquetting stresses on intrinsic bioconstituents of rice straw based solid biofuel," Renewable Energy, Elsevier, vol. 133(C), pages 462-469.
    8. Dal-Bó, Vanessa & Lira, Taisa & Arrieche, Leonardo & Bacelos, Marcelo, 2019. "Process synthesis for coffee husks to energy using hierarchical approaches," Renewable Energy, Elsevier, vol. 142(C), pages 195-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    3. Cardarelli, Alessandro & Pinzi, Sara & Barbanera, Marco, 2022. "Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics," Renewable Energy, Elsevier, vol. 185(C), pages 704-716.
    4. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    5. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    6. Branca, Carmen & Galgano, Antonio & Di Blasi, Colomba, 2023. "Dynamics and products of potato crop residue conversion under a pyrolytic runaway regime - Influences of feedstock variability," Energy, Elsevier, vol. 276(C).
    7. Niu, Yanqing & Lv, Yuan & Lei, Yu & Liu, Siqi & Liang, Yang & Wang, Denghui & Hui, Shi'en, 2019. "Biomass torrefaction: properties, applications, challenges, and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Wang, Dongji & Liu, Liansheng & Yuan, Ye & Yang, Hua & Zhou, Yixing & Duan, Ruanze, 2020. "Design and key heating power parameters of a newly-developed household biomass briquette heating boiler," Renewable Energy, Elsevier, vol. 147(P1), pages 1371-1379.
    9. Fu, Jie & Mao, Xiao & Siyal, Asif Ali & Liu, Yang & Ao, Wenya & Liu, Guangqing & Dai, Jianjun, 2021. "Pyrolysis of furfural residue pellets: Physicochemical characteristics of pyrolytic pellets and pyrolysis kinetics," Renewable Energy, Elsevier, vol. 179(C), pages 2136-2146.
    10. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    11. Euripedes Garcia Silveira Junior & Victor Haber Perez & Solciaray Cardoso Soares Estefan de Paula & Thays da Costa Silveira & Fabio Lopes Olivares & Oselys Rodriguez Justo, 2023. "Coffee Husks Valorization for Levoglucosan Production and Other Pyrolytic Products through Thermochemical Conversion by Fast Pyrolysis," Energies, MDPI, vol. 16(6), pages 1-23, March.
    12. Sunyong Park & Seok Jun Kim & Kwang Cheol Oh & La Hoon Cho & Min Jun Kim & In Seon Jeong & Chung Geon Lee & Dae Hyun Kim, 2020. "Characteristic Analysis of Torrefied Pellets: Determining Optimal Torrefaction Conditions for Agri-Byproduct," Energies, MDPI, vol. 13(2), pages 1-14, January.
    13. Jakub Stolarski & Sławomir Wierzbicki & Szymon Nitkiewicz & Mariusz Jerzy Stolarski, 2023. "Wood Chip Production Efficiency Depending on Chipper Type," Energies, MDPI, vol. 16(13), pages 1-15, June.
    14. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Patel, Anil & Juneja, Ankita & Singh, Rajendra Prasad & Yan, Binghua & Awasthi, Sanjeev Kumar & Jain, Archana & Liu, Tao & Duan, Yumin & Pandey, Ashok & Zh, 2020. "Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    15. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    16. Mohd Fuad, Muhammad Ariff Hanaffi & Hasan, Mohd Faizal & Chong, William Woei Fong & Ani, Farid Nasir & Ngadiman, Nor Hasrul Akhmal, 2024. "A novel oxidative microwave torrefaction approach for producing empty fruit bunch-starch binder briquettes as a potential biomass-based energy," Renewable Energy, Elsevier, vol. 228(C).
    17. Marreiro, Hívila M.P. & Peruchi, Rogério S. & Lopes, Riuzuani M.B.P. & Rotella Junior, Paulo, 2024. "Briquetting process optimization of poultry litter and urban wood waste," Renewable Energy, Elsevier, vol. 222(C).
    18. Stolarski, Mariusz J. & Dudziec, Paweł & Krzyżaniak, Michał & Graban, Łukasz & Lajszner, Waldemar & Olba–Zięty, Ewelina, 2024. "How do key for the bioenergy industry properties of baled biomass change over two years of storage?," Renewable Energy, Elsevier, vol. 224(C).
    19. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    20. Riaz, Sajid & Oluwoye, Ibukun & Al-Abdeli, Yasir M., 2022. "Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics," Renewable Energy, Elsevier, vol. 199(C), pages 908-918.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.