IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v208y2018icp384-392.html
   My bibliography  Save this article

Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain

Author

Listed:
  • Gai, Xiapu
  • Liu, Hongbin
  • Liu, Jian
  • Zhai, Limei
  • Yang, Bo
  • Wu, Shuxia
  • Ren, Tianzhi
  • Lei, Qiuliang
  • Wang, Hongyuan

Abstract

Application of manure is reported to effectively improve agricultural soil fertility. However, the potential of annual manure applications to increase stocks of soil organic carbon (SOC) and total nitrogen (TN) needs to be better understood. In this study, we evaluated the long-term (1991–2012) effects of various fertilization regimes on crop yield, and SOC and TN in the topsoil (0–20 cm) of a fluvo-aquic soil in a wheat (Triticum aestivumL.)-maize (Zea mays L.) cropping system in the North China Plain. The treatments included no N fertilizer (PK), chemical N, P, K fertilizers (NPK), NPK plus 22.5 t ha−1 swine manure (NPKM), and NPK plus 33.75 t ha−1 swine manure (NPKM+). Compared with NPK and PK, both NPKM and NPKM+ significantly increased crop yields, with no significant difference between NPKM and NPKM+. NPKM and NPKM+ treatments had a lower N use efficiency (NUE) than NPK through the whole period and the average NUE were 30.1%, 14.8% and 12.3% in NPK, NPKM and NPKM+ treatments, respectively. Compared with the initial value of 17.2–17.4 Mg C ha−1 and 2.01–2.07 Mg N ha−1, SOC and TN stocks in NPKM and NPKM+ increased by 94.7–114.2% and 83.0–98.0% over the 22 experimental years, respectively, without any indication of C or N saturation in the soil. Furthermore, TN stock was positively correlated to SOC stock (P < 0.01) added with manure, indicating the significance of more organic C input from manure to build up TN pool. In conclusion, long-term application of organic manure in combination with conventional chemical fertilization could increase crop yield and soil C and N stocks in the wheat-maize cropping system of the North China Plain, but it should be noted that large amounts of manure N could also lead to elevated risk of environmental N losses.

Suggested Citation

  • Gai, Xiapu & Liu, Hongbin & Liu, Jian & Zhai, Limei & Yang, Bo & Wu, Shuxia & Ren, Tianzhi & Lei, Qiuliang & Wang, Hongyuan, 2018. "Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain," Agricultural Water Management, Elsevier, vol. 208(C), pages 384-392.
  • Handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:384-392
    DOI: 10.1016/j.agwat.2018.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418305377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natasha MacBean & Philippe Peylin, 2014. "Agriculture and the global carbon cycle," Nature, Nature, vol. 515(7527), pages 351-352, November.
    2. Zhanjun Liu & Qinlei Rong & Wei Zhou & Guoqing Liang, 2017. "Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinez, Sara & Alvarez, Sergio & Capuano, Anibal & Delgado, Maria del Mar, 2020. "Environmental performance of animal feed production from Camelina sativa (L.) Crantz: Influence of crop management practices under Mediterranean conditions," Agricultural Systems, Elsevier, vol. 177(C).
    2. Daijing Zhang & Xinru Hao & Zhiyao Fan & Xiao Hu & Jianhui Ma & Yuxin Guo & Lin Wu, 2022. "Optimizing Tillage and Fertilization Patterns to Improve Soil Physical Properties, NUE and Economic Benefits of Wheat-Maize Crop Rotation Systems," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    3. Wang, Yicheng & Tao, Fulu & Chen, Yi & Yin, Lichang, 2024. "Climate mitigation potential and economic costs of natural climate solutions for main cropping systems across China," Agricultural Systems, Elsevier, vol. 218(C).
    4. Armelle Zaragüeta & Alberto Enrique & Xavier Portell & Rodrigo Antón & Iñigo Virto & Luis Orcaray, 2023. "A Fertilisation Strategy Combining Mineral Fertiliser and Biosolid Improves Long-Term Yield and Carbon Storage in a Calcareous Soil," Agriculture, MDPI, vol. 13(4), pages 1-16, April.
    5. Xiaopeng Shi & Xin Song & Guibin Zhao & Qifeng Yang & Lynette K. Abbott & Fengmin Li, 2022. "Manure Application Is the Key to Improving Soil Quality of New Terraces," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    6. María José Delgado-Iniesta & Aldara Girona-Ruíz & Antonio Sánchez-Navarro, 2023. "Agro-Ecological Impact of Irrigation and Nutrient Management on Spinach ( Spinacia oleracea L.) Grown in Semi-Arid Conditions," Land, MDPI, vol. 12(2), pages 1-20, January.
    7. Yan, Zhenxing & Zhang, Wenying & Wang, Qingsuo & Liu, Enke & Sun, Dongbao & Liu, Binhui & Liu, Xiu & Mei, Xurong, 2022. "Changes in soil organic carbon stocks from reducing irrigation can be offset by applying organic fertilizer in the North China Plain," Agricultural Water Management, Elsevier, vol. 266(C).
    8. Zhang, Fangfang & Wei, Ya'nan & Bo, Qifei & Tang, An & Song, Qilong & Li, Shiqing & Yue, Shanchao, 2022. "Long-term film mulching with manure amendment increases crop yield and water productivity but decreases the soil carbon and nitrogen sequestration potential in semiarid farmland," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Duan, Chenxiao & Chen, Jifei & Li, Jiabei & Su, Shunshun & Lei, Qi & Feng, Hao & Wu, Shufang & Zhang, Tibin & Siddique, Kadambot H.M. & Zou, Yufeng, 2022. "Biomaterial amendments combined with ridge–furrow mulching improve soil hydrothermal characteristics and wolfberry (Lycium barbarum L.) growth in the Qaidam Basin of China," Agricultural Water Management, Elsevier, vol. 259(C).
    10. Zhang, Binbin & Hu, Yajin & Hill, Robert Lee & Wu, Shufang & Song, Xiaolin, 2021. "Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in a rainfed apple orchard on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 248(C).
    11. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Chen, Zhijun & Li, Yue & Zhang, Xuechen & Xiong, Yunwu & Huang, Quanzhong & Jin, Song & Sun, Shijun & Chi, Daocai & Huang, Guanhua, 2022. "Effects of lignite bioorganic product on sunflower growth, water and nitrogen productivity in saline-sodic farmlands at Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Md Elias Hossain & Xurong Mei & Wenying Zhang & Wenyi Dong & Zhenxing Yan & Xiu Liu & Saxena Rachit & Subramaniam Gopalakrishnan & Enke Liu, 2021. "Substitution of Chemical Fertilizer with Organic Fertilizer Affects Soil Total Nitrogen and Its Fractions in Northern China," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    14. Guo, Liangliang & Wang, Xuejie & Wang, Shaobo & Tan, Dechong & Han, Huifang & Ning, Tangyuan & Li, Quanqi, 2019. "Tillage and irrigation effects on carbon emissions and water use of summer maize in North China Plains," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    15. Ma, Wanglin & Zheng, Hongyun, 2021. "Impacts of Smartphone Use on Agrochemical Use Among Wheat Farmers in China: A Heterogeneous Analysis," 2021 Conference, August 17-31, 2021, Virtual 314991, International Association of Agricultural Economists.
    16. Xianzhe Hao & Xiaojuan Shi & Aziz Khan & Nannan Li & Feng Shi & Junhong Li & Yu Tian & Peng Han & Jun Wang & Honghai Luo, 2022. "Industrial Organic Wastewater through Drip Irrigation to Reduce Chemical Fertilizer Input and Increase Use Efficiency by Promoting N and P Absorption of Cotton in Arid Areas," Agriculture, MDPI, vol. 12(12), pages 1-20, November.
    17. Wanglin Ma & Hongyun Zheng, 2022. "Heterogeneous impacts of information technology adoption on pesticide and fertiliser expenditures: Evidence from wheat farmers in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(1), pages 72-92, January.
    18. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Cheng Hu & Xiange Xia & Yunfeng Chen & Yan Qiao & Donghai Liu & Jun Fan & Shuanglai Li, 2019. "Yield, nitrogen use efficiency and balance response to thirty-five years of fertilization in paddy rice-upland wheat cropping system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(2), pages 55-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mugizi, Francisco M.P. & Matsumoto, Tomoya, 2021. "A curse or a blessing? Population pressure and soil quality in Sub-Saharan Africa: Evidence from rural Uganda," Ecological Economics, Elsevier, vol. 179(C).
    2. Meenakshi Sharma & Rajesh Kaushal & Prashant Kaushik & Seeram Ramakrishna, 2021. "Carbon Farming: Prospects and Challenges," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    3. Haiming Tang & Yilan Xu & Chao Li & Lihong Shi & Li Wen & Weiyan Li & Kaikai Cheng & Xiaoping Xiao, 2022. "Effects of Different Long-Term Fertilizer Management Systems on Soil Microbial Biomass Turnover in a Double-Cropping Rice Field in Southern China," Agriculture, MDPI, vol. 12(10), pages 1-10, October.
    4. Jingnan Li & Haiyang Zhang & Li Zheng, 2023. "Influence of Organic Amendments Based on Garden Waste for Microbial Community Growth in Coastal Saline Soil," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    5. Guozhu Ma & Shenghai Cheng & Wenli He & Yixuan Dong & Shaowu Qi & Naimei Tu & Weixu Tao, 2023. "Effects of Organic and Inorganic Fertilizers on Soil Nutrient Conditions in Rice Fields with Varying Soil Fertility," Land, MDPI, vol. 12(5), pages 1-17, May.
    6. Jingnan Li & Xiangyang Sun & Suyan Li, 2020. "Effects of Garden Waste Compost and Bentonite on Muddy Coastal Saline Soil," Sustainability, MDPI, vol. 12(9), pages 1-13, April.
    7. Ekrem Ozlu & Gafur Gozukara & Mert Acar & Serdar Bilen & Emre Babur, 2022. "Field-Scale Evaluation of the Soil Quality Index as Influenced by Dairy Manure and Inorganic Fertilizers," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    8. Qin Zhang & Yutao Peng & Jingxin Wang & Longcheng Li & Danjun Yao & Aihua Zhang & Wenhua Wang & Shengjian Kuang & Heng Liao & Qing Zhu & Bangxi Zhang, 2021. "Improving Ecological Functions and Ornamental Values of Traditional Pear Orchard by Co-Planting of Green Manures of Astragalus sinicus L. and Lathyrus cicera L," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
    9. Sun, Jiaxin & Yang, Yanli & Qi, Peng & Zhang, Guangxin & Wu, Yao, 2024. "Development and application of a new water-carbon-economy coupling model (WCECM) for optimal allocation of agricultural water and land resources," Agricultural Water Management, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:208:y:2018:i:c:p:384-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.