IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14640-d965609.html
   My bibliography  Save this article

Explainable Ensemble Learning Models for the Rheological Properties of Self-Compacting Concrete

Author

Listed:
  • Celal Cakiroglu

    (Department of Civil Engineering, Turkish-German University, 34820 Istanbul, Turkey)

  • Gebrail Bekdaş

    (Department of Civil Engineering, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey)

  • Sanghun Kim

    (Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA)

  • Zong Woo Geem

    (Department of Smart City & Energy, Gachon University, Seongnam 13120, Korea)

Abstract

Self-compacting concrete (SCC) has been developed as a type of concrete capable of filling narrow gaps in highly reinforced areas of a mold without internal or external vibration. Bleeding and segregation in SCC can be prevented by the addition of superplasticizers. Due to these favorable properties, SCC has been adopted worldwide. The workability of SCC is closely related to its yield stress and plastic viscosity levels. Therefore, the accurate prediction of yield stress and plastic viscosity of SCC has certain advantages. Predictions of the shear stress and plastic viscosity of SCC is presented in the current study using four different ensemble machine learning techniques: Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), random forest, and Categorical Gradient Boosting (CatBoost). A new database containing the results of slump flow, V-funnel, and L-Box tests with the corresponding shear stress and plastic viscosity values was curated from the literature to develop these ensemble learning models. The performances of these algorithms were compared using state-of-the-art statistical measures of accuracy. Afterward, the output of these ensemble learning algorithms was interpreted with the help of SHapley Additive exPlanations (SHAP) analysis and individual conditional expectation (ICE) plots. Each input variable’s effect on the predictions of the model and their interdependencies have been illustrated. Highly accurate predictions could be achieved with a coefficient of determination greater than 0.96 for both shear stress and plastic viscosity.

Suggested Citation

  • Celal Cakiroglu & Gebrail Bekdaş & Sanghun Kim & Zong Woo Geem, 2022. "Explainable Ensemble Learning Models for the Rheological Properties of Self-Compacting Concrete," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14640-:d:965609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14640/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14640/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quang Hung Nguyen & Hai-Bang Ly & Lanh Si Ho & Nadhir Al-Ansari & Hiep Van Le & Van Quan Tran & Indra Prakash & Binh Thai Pham, 2021. "Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, February.
    2. Hamed Safayenikoo & Fatemeh Nejati & Moncef L. Nehdi, 2022. "Indirect Analysis of Concrete Slump Using Different Metaheuristic-Empowered Neural Processors," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaren Aydın & Ümit Işıkdağ & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2023. "Use of Machine Learning Techniques in Soil Classification," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    2. Celal Cakiroglu & Gebrail Bekdaş, 2023. "Predictive Modeling of Recycled Aggregate Concrete Beam Shear Strength Using Explainable Ensemble Learning Methods," Sustainability, MDPI, vol. 15(6), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Jongkyum & Lim, Jee-Hae & Yoon, Kyunghee, 2022. "How do the content, format, and tone of Twitter-based corporate disclosure vary depending on earnings performance?," International Journal of Accounting Information Systems, Elsevier, vol. 47(C).
    2. Arash Mohammadi Fallah & Ehsan Ghafourian & Ladan Shahzamani Sichani & Hossein Ghafourian & Behdad Arandian & Moncef L. Nehdi, 2023. "Novel Neural Network Optimized by Electrostatic Discharge Algorithm for Modification of Buildings Energy Performance," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    3. Zhang, Jianhong & van Witteloostuijn, Arjen & Zhou, Chaohong & Zhou, Shengyang, 2024. "Cross-border acquisition completion by emerging market MNEs revisited: Inductive evidence from a machine learning analysis," Journal of World Business, Elsevier, vol. 59(2).
    4. Matthew Oyeleye & Tianhua Chen & Sofya Titarenko & Grigoris Antoniou, 2022. "A Predictive Analysis of Heart Rates Using Machine Learning Techniques," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
    5. Madhusmita Das & Rasmita Dash & Sambit Kumar Mishra, 2023. "Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    6. Xinguo Miao & Lei Liu & Zhiyong Wang & Xiaoming Chen, 2024. "Improved Error-Based Ensemble Learning Model for Compressor Performance Parameter Prediction," Energies, MDPI, vol. 17(9), pages 1-12, April.
    7. Mohamed Zul Fadhli Khairuddin & Puat Lu Hui & Khairunnisa Hasikin & Nasrul Anuar Abd Razak & Khin Wee Lai & Ahmad Shakir Mohd Saudi & Siti Salwa Ibrahim, 2022. "Occupational Injury Risk Mitigation: Machine Learning Approach and Feature Optimization for Smart Workplace Surveillance," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    8. Van Quan Tran, 2023. "Using Artificial Intelligence Approach for Investigating and Predicting Yield Stress of Cemented Paste Backfill," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    9. Yaren Aydın & Ümit Işıkdağ & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2023. "Use of Machine Learning Techniques in Soil Classification," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    10. Cheng-Hsiung Tsai & Yu-Da Lin & Cheng-Hong Yang & Chien-Kun Wang & Li-Chun Chiang & Po-Jui Chiang, 2023. "A Biogeography-Based Optimization with a Greedy Randomized Adaptive Search Procedure and the 2-Opt Algorithm for the Traveling Salesman Problem," Sustainability, MDPI, vol. 15(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14640-:d:965609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.