Novel Neural Network Optimized by Electrostatic Discharge Algorithm for Modification of Buildings Energy Performance
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hamzah Ali Alkhazaleh & Navid Nahi & Mohammad Hossein Hashemian & Zohreh Nazem & Wameed Deyah Shamsi & Moncef L. Nehdi, 2022. "Prediction of Thermal Energy Demand Using Fuzzy-Based Models Synthesized with Metaheuristic Algorithms," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
- Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
- Hamed Safayenikoo & Fatemeh Nejati & Moncef L. Nehdi, 2022. "Indirect Analysis of Concrete Slump Using Different Metaheuristic-Empowered Neural Processors," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
- Nadia Jahanafroozi & Saman Shokrpour & Fatemeh Nejati & Omrane Benjeddou & Mohammad Worya Khordehbinan & Afshin Marani & Moncef L. Nehdi, 2022. "New Heuristic Methods for Sustainable Energy Performance Analysis of HVAC Systems," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
- Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
- Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jilong Zhang & Yuan Diao, 2024. "Hierarchical Learning-Enhanced Chaotic Crayfish Optimization Algorithm: Improving Extreme Learning Machine Diagnostics in Breast Cancer," Mathematics, MDPI, vol. 12(17), pages 1-26, August.
- Shun Zhou & Yuan Shi & Dijing Wang & Xianze Xu & Manman Xu & Yan Deng, 2024. "Election Optimizer Algorithm: A New Meta-Heuristic Optimization Algorithm for Solving Industrial Engineering Design Problems," Mathematics, MDPI, vol. 12(10), pages 1-32, May.
- Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Guimei & Mukhtar, Azfarizal & Moayedi, Hossein & Khalilpoor, Nima & Tt, Quynh, 2024. "Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector," Energy, Elsevier, vol. 298(C).
- Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
- Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
- Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
- Sang Hyuk Kim & Hee Soo Lee & Han Jun Ko & Seung Hwan Jeong & Hyun Woo Byun & Kyong Joo Oh, 2018. "Pattern Matching Trading System Based on the Dynamic Time Warping Algorithm," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
- Yushi Wang & Beining Hu & Xianhai Meng & Runjin Xiao, 2024. "A Comprehensive Review on Technologies for Achieving Zero-Energy Buildings," Sustainability, MDPI, vol. 16(24), pages 1-26, December.
- Ziyuan Wang, 2023. "Spatial Differentiation Characteristics of Rural Areas Based on Machine Learning and GIS Statistical Analysis—A Case Study of Yongtai County, Fuzhou City," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
- Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
- Yousaf Murtaza Rind & Muhammad Haseeb Raza & Muhammad Zubair & Muhammad Qasim Mehmood & Yehia Massoud, 2023. "Smart Energy Meters for Smart Grids, an Internet of Things Perspective," Energies, MDPI, vol. 16(4), pages 1-35, February.
- Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Escanciano García-Miranda, Carmen & Sánchez Lasheras, Fernando, 2018. "Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models," Resources Policy, Elsevier, vol. 59(C), pages 95-102.
- Wenting Zhang & Shigeyuki Hamori, 2020. "Do Machine Learning Techniques and Dynamic Methods Help Forecast US Natural Gas Crises?," Energies, MDPI, vol. 13(9), pages 1-22, May.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2020. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Samira Rastbod & Farnaz Rahimi & Yara Dehghan & Saeed Kamranfar & Omrane Benjeddou & Moncef L. Nehdi, 2022. "An Optimized Machine Learning Approach for Forecasting Thermal Energy Demand of Buildings," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
- Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
- Liu, Zhikai & Zhang, Huan & Wang, Yaran & Song, Zixu & You, Shijun & Jiang, Yan & Wu, Zhangxiang, 2022. "A thermal-hydraulic coupled simulation approach for the temperature and flow rate control strategy evaluation of the multi-room radiator heating system," Energy, Elsevier, vol. 246(C).
- Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
- Li, Guannan & Hu, Yunpeng & Chen, Huanxin & Li, Haorong & Hu, Min & Guo, Yabin & Liu, Jiangyan & Sun, Shaobo & Sun, Miao, 2017. "Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions," Applied Energy, Elsevier, vol. 185(P1), pages 846-861.
- Wang, Yongjie & Zhan, Changhong & Li, Guanghao & Ren, Shaochen, 2024. "Comparison of algorithms for heat load prediction of buildings," Energy, Elsevier, vol. 297(C).
- Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
More about this item
Keywords
optimization; sustainable energy; building energy performance; thermal load;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2884-:d:1058638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.