Using Artificial Intelligence Approach for Investigating and Predicting Yield Stress of Cemented Paste Backfill
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Quang Hung Nguyen & Hai-Bang Ly & Lanh Si Ho & Nadhir Al-Ansari & Hiep Van Le & Van Quan Tran & Indra Prakash & Binh Thai Pham, 2021. "Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, February.
- Aya Hasan AlKhereibi & Tadesse G. Wakjira & Murat Kucukvar & Nuri C. Onat, 2023. "Predictive Machine Learning Algorithms for Metro Ridership Based on Urban Land Use Policies in Support of Transit-Oriented Development," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kim, Jongkyum & Lim, Jee-Hae & Yoon, Kyunghee, 2022. "How do the content, format, and tone of Twitter-based corporate disclosure vary depending on earnings performance?," International Journal of Accounting Information Systems, Elsevier, vol. 47(C).
- Xiangning Dong & Xuhao Zhu & Minghua Hu & Jie Bao, 2023. "A Methodology for Predicting Ground Delay Program Incidence through Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
- Ma, Xinwei & Tian, Xiaolin & Jin, Zejin & Cui, Hongjun & Ji, Yanjie & Cheng, Long, 2024. "Evaluation and determinants of metro users' regularity: Insights from transit one-card data," Journal of Transport Geography, Elsevier, vol. 118(C).
- Zhang, Jianhong & van Witteloostuijn, Arjen & Zhou, Chaohong & Zhou, Shengyang, 2024. "Cross-border acquisition completion by emerging market MNEs revisited: Inductive evidence from a machine learning analysis," Journal of World Business, Elsevier, vol. 59(2).
- Nicola Berloco & Stefano Coropulis & Giuseppe Garofalo & Paolo Intini & Vittorio Ranieri, 2023. "Analysis of the Factors Influencing Speed Cushion Effectiveness in the Urban Context: A Case Study Experiment in the City of Bari, Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
- Matthew Oyeleye & Tianhua Chen & Sofya Titarenko & Grigoris Antoniou, 2022. "A Predictive Analysis of Heart Rates Using Machine Learning Techniques," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
- Madhusmita Das & Rasmita Dash & Sambit Kumar Mishra, 2023. "Automatic Detection of Oral Squamous Cell Carcinoma from Histopathological Images of Oral Mucosa Using Deep Convolutional Neural Network," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
- Caropul Mendes & Hugo Raposo & Ricardo Ferraz & José Torres Farinha, 2023. "The Economic Management of Physical Assets: The Practical Case of an Urban Passenger Transport Company in Portugal," Sustainability, MDPI, vol. 15(15), pages 1-19, July.
- Xinguo Miao & Lei Liu & Zhiyong Wang & Xiaoming Chen, 2024. "Improved Error-Based Ensemble Learning Model for Compressor Performance Parameter Prediction," Energies, MDPI, vol. 17(9), pages 1-12, April.
- Mohamed Zul Fadhli Khairuddin & Puat Lu Hui & Khairunnisa Hasikin & Nasrul Anuar Abd Razak & Khin Wee Lai & Ahmad Shakir Mohd Saudi & Siti Salwa Ibrahim, 2022. "Occupational Injury Risk Mitigation: Machine Learning Approach and Feature Optimization for Smart Workplace Surveillance," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
- Celal Cakiroglu & Gebrail Bekdaş & Sanghun Kim & Zong Woo Geem, 2022. "Explainable Ensemble Learning Models for the Rheological Properties of Self-Compacting Concrete," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
- Yaren Aydın & Ümit Işıkdağ & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2023. "Use of Machine Learning Techniques in Soil Classification," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
More about this item
Keywords
cemented paste backfill; yield stress; machine learning; SHapley Additive exPlanations (SHAP); Permutation Importance; Individual Conditional Expectation (ICE);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2892-:d:1058980. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.