IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14364-d961522.html
   My bibliography  Save this article

Long-Lived Sustainable Products through Digital Innovation

Author

Listed:
  • Raul Carlsson

    (RISE—Research Institutes of Sweden, SE-412 58 Gothenburg, Sweden)

  • Tatiana Nevzorova

    (RISE—Research Institutes of Sweden, SE-412 58 Gothenburg, Sweden)

  • Karolina Vikingsson

    (RISE—Research Institutes of Sweden, SE-412 58 Gothenburg, Sweden)

Abstract

Digitalization is key for an organization to achieve sustainability leadership, to be able to conform with sustainability objectives, support claims, and inform consumers and consecutive stakeholders. However, there is no impartial, credible, and universal market platform where market competition favors data exchange and traceability of products and materials. This paper addresses the question of how to utilize digital tools to meet the challenges at the interface between the producer and the consumer. The methodology of the study is action research, which includes various qualitative and quantitative research methods. The research results in the creation of an information system platform, which shows how to merge digital information with a product to provide credibility to consumers and support their purchasing decision based on the claimed lifetime of the product, the sustainability requirements met, how the consumer will find service and spare parts, as well as the design of a universal digital twin. This research contributes to the transparency and traceability aspects by showing how organizations can work and cooperate to create verifiable information and establish claims that support resource efficiency decisions, as well as demonstrating how a traceability system can facilitate the efficient use of materials and energy resources.

Suggested Citation

  • Raul Carlsson & Tatiana Nevzorova & Karolina Vikingsson, 2022. "Long-Lived Sustainable Products through Digital Innovation," Sustainability, MDPI, vol. 14(21), pages 1-26, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14364-:d:961522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shinsuke Murakami & Masahiro Oguchi & Tomohiro Tasaki & Ichiro Daigo & Seiji Hashimoto, 2010. "Lifespan of Commodities, Part I," Journal of Industrial Ecology, Yale University, vol. 14(4), pages 598-612, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    2. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    3. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.
    4. Kito, Minami, 2021. "Impact of aircraft lifetime change on lifecycle CO2 emissions and costs in Japan," Ecological Economics, Elsevier, vol. 188(C).
    5. Guzzo, Daniel & Rodrigues, Vinicius Picanço & Mascarenhas, Janaina, 2021. "A systems representation of the Circular Economy: Transition scenarios in the electrical and electronic equipment (EEE) industry," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    6. Kalmykova, Yuliya & Berg, Per E.-O. & Patrício, João & Lisovskaja, Vera, 2017. "Portable battery lifespans and new estimation method for battery collection rate based on a lifespan modeling approach," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 65-74.
    7. Julia S. Nikulski & Michael Ritthoff & Nadja von Gries, 2021. "The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps," Resources, MDPI, vol. 10(4), pages 1-17, April.
    8. Dirk Lauinger & Romain G. Billy & Felipe Vásquez & Daniel B. Müller, 2021. "A general framework for stock dynamics of populations and built and natural environments," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1136-1146, October.
    9. Till Zimmermann & Stefan Gößling-Reisemann, 2014. "Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications," Resources, MDPI, vol. 3(1), pages 1-28, March.
    10. Nazzal, Dima & Batarseh, Ola & Patzner, Joshua & Martin, Darren R., 2013. "Product servicing for lifespan extension and sustainable consumption: An optimization approach," International Journal of Production Economics, Elsevier, vol. 142(1), pages 105-114.
    11. Ingun Grimstad Klepp & Kirsi Laitala & Stephen Wiedemann, 2020. "Clothing Lifespans: What Should Be Measured and How," Sustainability, MDPI, vol. 12(15), pages 1-21, August.
    12. Tulga Mendjargal & Eiji Yamasue & Hiroki Tanikawa, 2022. "Estimation of the Lifespan of Imported Passenger Vehicles in Mongolia," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    13. Mengqing Kan & Chunyan Wang & Bing Zhu & Wei‐Qiang Chen & Yi Liu & Yucheng Ren & Ming Xu, 2023. "Seven decades of plastic flows and stocks in the United States and pathways toward zero plastic pollution by 2050," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1538-1552, December.
    14. Tsiliyannis, Christos Aristeides, 2018. "Markov chain modeling and forecasting of product returns in remanufacturing based on stock mean-age," European Journal of Operational Research, Elsevier, vol. 271(2), pages 474-489.
    15. Parajuly, Keshav & Habib, Komal & Liu, Gang, 2017. "Waste electrical and electronic equipment (WEEE) in Denmark: Flows, quantities and management," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 85-92.
    16. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    17. Shinsuke Murakami & Haruhisa Yamamoto & Terufumi Toyota, 2021. "Potential Impact of Consumer Intention on Generation of Waste Photovoltaic Panels: A Case Study for Tokyo," Sustainability, MDPI, vol. 13(19), pages 1-11, September.
    18. Marta Royo & Vicente Chulvi & Elena Mulet & Laura Ruiz‐Pastor, 2023. "Analysis of parameters about useful life extension in 70 tools and methods related to eco‐design and circular economy," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 562-586, April.
    19. Jenni Ylä-Mella & Riitta L. Keiski & Eva Pongrácz, 2022. "End-of-Use vs. End-of-Life: When Do Consumer Electronics Become Waste?," Resources, MDPI, vol. 11(2), pages 1-14, February.
    20. Yuya Nakamoto, 2017. "CO2 reduction potentials through the market expansion and lifetime extension of used cars," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14364-:d:961522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.