IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v10y2021i4p37-d537769.html
   My bibliography  Save this article

The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps

Author

Listed:
  • Julia S. Nikulski

    (Wuppertal Institute for Climate, Environment and Energy, Doeppersberg 19, 42103 Wuppertal, Germany)

  • Michael Ritthoff

    (Wuppertal Institute for Climate, Environment and Energy, Doeppersberg 19, 42103 Wuppertal, Germany)

  • Nadja von Gries

    (Wuppertal Institute for Climate, Environment and Energy, Doeppersberg 19, 42103 Wuppertal, Germany)

Abstract

Supply risks and environmental concerns drive the interest in critical raw material recycling in the European Union. Globally, waste electrical and electronic equipment (WEEE) is projected to increase by almost 40% until 2030. This waste stream can be a source of secondary raw materials. The determination of the economic feasibility of recycling and recovering specific materials is a data-intensive, time-consuming, and case-specific task. This study introduced a two-part evaluation scheme consisting of upper continental crust concentrations and raw material prices as a simple tool to indicate the potential and limitations of critical raw material recycling. It was applied to the case of light-emitting diodes (LED) lamps in the EU. A material flow analysis was conducted, and the projected waste amounts were analyzed using the new scheme. Indium, gallium, and the rare earth elements appeared in low concentrations and low absolute masses and showed only a small revenue potential. Precious metals represented the largest revenue share. Future research should confirm the validity and usefulness of the evaluation scheme.

Suggested Citation

  • Julia S. Nikulski & Michael Ritthoff & Nadja von Gries, 2021. "The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps," Resources, MDPI, vol. 10(4), pages 1-17, April.
  • Handle: RePEc:gam:jresou:v:10:y:2021:i:4:p:37-:d:537769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/10/4/37/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/10/4/37/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    2. Shinsuke Murakami & Masahiro Oguchi & Tomohiro Tasaki & Ichiro Daigo & Seiji Hashimoto, 2010. "Lifespan of Commodities, Part I," Journal of Industrial Ecology, Yale University, vol. 14(4), pages 598-612, August.
    3. Carruth, Mark A. & Allwood, Julian M. & Moynihan, Muiris C., 2011. "The technical potential for reducing metal requirements through lightweight product design," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 48-60.
    4. Oguchi, Masahiro & Kameya, Takashi & Yagi, Suguru & Urano, Kohei, 2008. "Product flow analysis of various consumer durables in Japan," Resources, Conservation & Recycling, Elsevier, vol. 52(3), pages 463-480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Leal Filho & Richard Kotter & Pinar Gökçin Özuyar & Ismaila Rimi Abubakar & João Henrique Paulino Pires Eustachio & Newton R. Matandirotya, 2023. "Understanding Rare Earth Elements as Critical Raw Materials," Sustainability, MDPI, vol. 15(3), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalmykova, Yuliya & Berg, Per E.-O. & Patrício, João & Lisovskaja, Vera, 2017. "Portable battery lifespans and new estimation method for battery collection rate based on a lifespan modeling approach," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 65-74.
    2. Till Zimmermann & Stefan Gößling-Reisemann, 2014. "Recycling Potentials of Critical Metals-Analyzing Secondary Flows from Selected Applications," Resources, MDPI, vol. 3(1), pages 1-28, March.
    3. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    4. Guo, Xiuping & Meng, Xianglei & Luan, Qingfeng & Wang, Yanhua, 2023. "Trade openness, globalization, and natural resources management: The moderating role of economic complexity in newly industrialized countries," Resources Policy, Elsevier, vol. 85(PA).
    5. Tsiliyannis, Christos Aristeides, 2015. "Sustainability by cyclic manufacturing: Assessment of resource preservation under uncertain growth and returns," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 155-170.
    6. Stede, Jan & Pauliuk, Stefan & Hardadi, Gilang & Neuhoff, Karsten, 2021. "Carbon pricing of basic materials: Incentives and risks for the value chain and consumers," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 189.
    7. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    8. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    9. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    10. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    11. Yingying Lu & Heinz Schandl, 2021. "Do sectoral material efficiency improvements add up to greenhouse gas emissions reduction on an economy‐wide level?," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 523-536, April.
    12. Zeynep Ozsut Bogar & Askiner Gungor, 2023. "Forecasting Waste Mobile Phone (WMP) Quantity and Evaluating the Potential Contribution to the Circular Economy: A Case Study of Turkey," Sustainability, MDPI, vol. 15(4), pages 1-38, February.
    13. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    14. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    15. Raul Carlsson & Tatiana Nevzorova & Karolina Vikingsson, 2022. "Long-Lived Sustainable Products through Digital Innovation," Sustainability, MDPI, vol. 14(21), pages 1-26, November.
    16. Jan Streeck & Hanspeter Wieland & Stefan Pauliuk & Barbara Plank & Kenichi Nakajima & Dominik Wiedenhofer, 2023. "A review of methods to trace material flows into final products in dynamic material flow analysis: Comparative application of six methods to the United States and EXIOBASE3 regions, Part 2," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 457-475, April.
    17. Rahmani, Mehdi & Nabizadeh, Ramin & Yaghmaeian, Kamyar & Mahvi, Amir Hossein & Yunesian, Massoud, 2014. "Estimation of waste from computers and mobile phones in Iran," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 21-29.
    18. Franz Schug & David Frantz & Dominik Wiedenhofer & Helmut Haberl & Doris Virág & Sebastian van der Linden & Patrick Hostert, 2023. "High‐resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 110-124, February.
    19. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    20. Barbara V. Kasulaitis & Callie W. Babbitt & Andrew K. Krock, 2019. "Dematerialization and the Circular Economy: Comparing Strategies to Reduce Material Impacts of the Consumer Electronic Product Ecosystem," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 119-132, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:10:y:2021:i:4:p:37-:d:537769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.